首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   28篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   9篇
  2015年   6篇
  2014年   7篇
  2013年   12篇
  2012年   4篇
  2011年   8篇
  2010年   12篇
  2009年   4篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   10篇
  2004年   6篇
  2003年   9篇
  2002年   8篇
  2001年   11篇
  2000年   2篇
  1999年   10篇
  1998年   2篇
  1997年   6篇
  1996年   3篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
排序方式: 共有200条查询结果,搜索用时 812 毫秒
11.
The fossil salmonid †Eosalmo driftwoodensis was originally described from fragmentary specimens. Study of new material of this fossil species confirms that it is a stem-group salmonine, with a mixture of primitive and derived salmonine features in its skull, but with its postcranial skeleton essentially of modern salmonine construction. Two autapomophies define the genus †Eosalmo: a long anterodorsal process of the subopercle meeting the dorsal edge of the bone at an angle of about 60o, and a thin dermal basihyal plate apparently lacking teeth. Its salmonine relationship is supported by eight derived features: (1) posterior part of frontal widely expanded above autosphenotic, (2) hyomandibular fossa on pterotic long, (3) posterior part of endopterygoid extending posteriorly and broadly overlapped by both metapterygoid and quadrate, (4) premaxillary process of maxilla extending dorsally at an angle larger than 10o, (5) infraorbitals 3 to 5 narrow and covering less than anterior half of hyomandibula, (6) presence of suprapreopercle, (7) anterior end of preopercular canal on horizontal arm distinctiy turning to anteroventral corner of preopercle, (8) first uroneural amplified into large fan-shaped stegural, and (9) scales small, with more fhan two lateral line scales per vertebral centrum. Salmonidae are a monophyletic family defined by at least three synapomorphies: posterior surface of epiotic with sulcus, peg-and-socket connection in caudal skeleton, and tetraploid karyotype. Within the Salmonidae, Thymallinae and Salmoninae form a clade based on features from premaxilla, supramaxilla, anguloarticular, and supraorbital.  相似文献   
12.
In this article, we develop a new reconstruction of the pelvic and hindlimb muscles of the large theropod dinosaur Tyrannosaurus rex. Our new reconstruction relies primarily on direct examination of both extant and fossil turtles, lepidosaurs, and archosaurs. These observations are placed into a phylogenetic context and data from extant taxa are used to constrain inferences concerning the soft-tissue structures in T. rex. Using this extant phylogenetic bracket, we are able to offer well-supported inferences concerning most of the hindlimb musculature in this taxon. We also refrain from making any inferences for certain muscles where the resulting optimizations are ambiguous. This reconstruction differs from several previous attempts and we evaluate these discrepancies. In addition to providing a new and more detailed understanding of the hindlimb morphology of T. rex--the largest known terrestrial biped--this reconstruction also helps to clarify the sequence of character-state change along the line to extant birds.  相似文献   
13.
We describe the extra bony elements, plates, and osteoderms present in species of the genus Brachycephalus. Samples of eight species of Brachycephalus, including seven populations of Brachycephalus ephippium, were examined. The large additional elements associated with the skull (parotic plate) and vertebrae (vertebral and paravertebral plates) all comprise intramembranous bone, similar to that of the frontoparietal or nasal bones of the skull of most of frogs. Additionally, in the dermis of one unnamed species, we discovered and described true osteoderms. We discuss the morphological nature and diversity of theses elements and their importance as evidence of phylogenetic relationship within Brachycephalus. In summary, three distinct conditions of extra bony elements occur in the genus Brachycephalus: (1) bony plates may be present or absent in species of the genus; (2) a few, small bony plates may be developed and these may be represented by (a) paravertebral plates small and restricted to the distal ends of the transverse processes of the presacral IV, (b) parotic plates small and not covering the tops of the squamosals, and (c) ornamented spinal plates on all vertebrae; and (3) well‐developed bony plates may be present as (a) paravertebral plates forming a ‘bone‐shield’ on the dorsal surface of the trunk, ornamented, and visible through the integument, (b) parotic plates covering the tops of the squamosals, and (c) spinal plates associated with all vertebrae, and ornamented on vertebrate I–VI. Although the phenomenon of miniaturization may be associated with the appearance of new elements in at least some of the species in the genus, the traditional rule may not be universally applicable. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 752–767.  相似文献   
14.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210.  相似文献   
15.
The remarkable lifestyle of heterocongrines has drawn the attention of many authors in the past, though no or little attention has been paid to the morphology of the tail and the head of these species. In order to examine the true nature of possible morphological specializations of the head and tail and their relation to their tail-first burrowing habit and/or feeding mode, a detailed myological and osteological study of Heteroconger hassi and Heteroconger longissimus was performed. The osteological similarities of the cranial skeleton between H. hassi and H. longissimus are striking. Most of the cranial muscles show no variation in presence, insertion or origin between these two species except for the adductor mandibulae complex, the adductor hyomandibulae and the intermandibularis. The adductor mandibulae complex is small, compared to that of other anguilliform species, and is probably related to their suction-dominated feeding mode and a diet, comprising mainly small, soft prey items. Heterocongrinae have undergone several morphological specializations in the tail for their tail-first burrowing lifestyle. The skeleton and musculature of the tail of H. hassi and H. longissimus are similar. In both species the caudal skeleton is highly reduced and fortified, forming a firm, pointed burrowing tool. Intrinsic caudal musculature is reduced and some muscles (interradials, supracarinalis) are even absent.  相似文献   
16.
Emus have reduced their wing skeleton to only a single functional digit, but the myological changes associated with this reduction have never been properly described. Moreover, the intraspecific variability associated with these changes has not previously been examined, dissections having been restricted in the past to only one or two individuals. In this paper, the myology and osteology of the Emu wing is described for a sample of five female birds. The Emu showed a marked reduction in the number of muscles in the wing, even compared with other ratites. Many wing muscles showed diversity in structure, origin and insertion sites, number of heads, as well as presence-absence variation. This variability dramatically exceeds that found in flying birds. Evolutionary theory predicts that relaxed selection on vestigial organs should allow more variation to persist in the population, and corresponds to what is observed here. A large amount of fluctuating asymmetry was also detected, indicating reduced canalization of the wing during development.  相似文献   
17.
Placodonts are Triassic marine reptiles that inhabited the eastern and western margins of the Tethys Ocean (modern South China and Europe/Middle East). Although the crania of European taxa are relatively well understood, those of Chinese taxa have not been extensively studied, and most of them have not been incorporated into a comprehensive phylogeny. Here we present the first reconstructions of all known Chinese placodont holotype skulls using micro‐computed tomographic (μCT) scanning and/or detailed anatomical study. We also present the first phylogenetic analyses that incorporate all placodont genera using a general diapsid matrix that includes postcranial characters, and a placodont‐only cranial matrix. Results vary between the matrices; however, both support a monophyletic Placodontia with eastern taxa interspaced throughout, indicating no major separation between the eastern and western Tethyan realms. Support is strong for a western Tethyan origin of Placodontia, although the highly nested Placochelyidae first appear in the upper Middle Triassic of the eastern Tethys. Thus, all placodont clades appear to have originated in a period of intense speciation during the Middle Triassic. © 2015 The Linnean Society of London  相似文献   
18.
19.
The larval chondrocranium of Spea multiplicata is described, as is the development and adult morphology of the skeleton. There are major modifications to the larval chondrocranium throughout development, including the presence of embryonic trabeculae in young tadpoles and significant reorganization of cartilaginous structures at metamorphosis. The first bone to ossify is the parasphenoid (Stage 35), followed by the presacral neural arches, ilium, and femur (Stage 36). By Stage 39, most of the postcranial elements have begun to ossify. Metamorphic climax is accomplished over three Gosner stages (39-41) and involves major modifications to the chondrocranium, as well as the appearance of three cranial elements (septomaxilla, nasal, and premaxilla). After metamorphosis, the exoccipital, vomer, dentary, angulosplenial, squamosal, pterygoid, sphenethmoid, ischium, and hyoid begin to ossify. The stapes, mentomeckelian, operculum, carpals, and tarsals do not appear until juvenile and adult stages. The development of the hyoid and cartilaginous condensations of the carpals and tarsals are described. In addition, phenotypic plasticity within the genus and the absence of a palatine (= neopalatine) bone are discussed.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号