首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   21篇
  国内免费   1篇
  2023年   8篇
  2021年   4篇
  2020年   5篇
  2019年   21篇
  2018年   12篇
  2017年   5篇
  2016年   3篇
  2015年   1篇
  2014年   6篇
  2013年   9篇
  2012年   3篇
  2011年   1篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1986年   1篇
  1984年   2篇
  1979年   1篇
排序方式: 共有121条查询结果,搜索用时 34 毫秒
11.
Lithium metal is the most attractive anode material due to its extremely high specific capacity, minimum potential, and low density. However, uncontrollable growth of lithium dendrite results in severe safety and cycling stability concerns, which hinders the application in next generation secondary batteries. In this paper, a new and facile method imposing a magnetic field to lithium metal anodes is proposed. That is, the lithium ions suffering Lorentz force due to the electromagnetic fields are put into spiral motion causing magnetohydrodynamics (MHD) effect. This MHD effect can effectively promote mass transfer and uniform distribution of lithium ions to suppress the dendrite growth as well as obtain uniform and compact lithium deposition. The results show that the lithium metal electrodes within the magnetic field exhibit excellent cycling and rate performance in a symmetrical battery. Additionally, full batteries using limited lithium metal as anodes and commercial LiFePO4 as cathodes show improved performance within the magnetic field. In summary, a new and facile strategy of suppressing lithium dendrites using the MHD effect by imposing a magnetic field is proposed, which may be generalized to other advanced alkali metal batteries.  相似文献   
12.
A facile and scalable approach is reported to stabilize the lithium‐metal anode by regulating the Li nucleation and deposition kinetics with laser‐induced graphene (LIG). By processing polyimide (PI) films on copper foils with a laser, a 3D‐hierarchical composite material is constructed, consisting of a highly conductive copper substrate, a pillared array of flexible PI, and most importantly, porous LIG on the walls of the PI pillars. The high number of defects and heteroatoms present in LIG significantly lowers the Li nucleation barrier compared to the copper foil. An overpotential‐free Li nucleation process is identified at current densities lower than 0.2 mA cm?2. Theoretical computations reveal that the defects serve as nucleation centers during the heterogeneous nucleation of lithium. By adopting such composites, ultrastable lithium‐metal anodes are obtained with high Coulombic efficiencies of ≈99%. Full lithium‐metal cells based on LiFePO4 cathodes with a material loading of ≈15 mg cm?2 and a negative/positive ratio of 5/1 could be cycled over 250 times with a capacity loss of less than 10%. The current work highlights the importance of nucleation kinetics on the stability of metallic anodes and demonstrates a practical method toward long lasting Li‐metal batteries.  相似文献   
13.
The dendritic structure is a disastrous problem of lithium metal batteries as well as other metal rechargeable batteries. The dendritic structures are usually caused by diffusion limitation. Here, a novel strategy is reported to inhibit lithium dendrites based on the understanding of their formation mechanism. An alternating current field perpendicular to the anode is set up, which promotes Li+ movement along the anode surface and prevents ions' deposition on the tips from forming dendrites. Furthermore, an external direct current field parallel to the current is employed, which accelerates the transport of Li+ in electrolytes to mitigate the concentration gradient nearby the anode and thus inhibits the formation of dendritic structures. A simultaneous employment of these two fields gains five times increase of the lifespan of batteries at the high charging current density of 2 mA cm?2, confirming the effectiveness of this strategy in protecting the metal anode and inhibiting lithium dendrites. This strategy may have a wide feasibility since it does not change the materials and structures of batteries.  相似文献   
14.
15.
The classical view of cortical information processing is that of a bottom-up process in a feedforward hierarchy. However, psychophysical, anatomical, and physiological evidence suggests that top-down effects play a crucial role in the processing of input stimuli. Not much is known about the neural mechanisms underlying these effects. Here we investigate a physiologically inspired model of two reciprocally connected cortical areas. Each area receives bottom-up as well as top-down information. This information is integrated by a mechanism that exploits recent findings on somato-dendritic interactions. (1) This results in a burst signal that is robust in the context of noise in bottom-up signals. (2) Investigating the influence of additional top-down information, priming-like effects on the processing of bottom-up input can be demonstrated. (3) In accordance with recent physiological findings, interareal coupling in low-frequency ranges is characteristically enhanced by top-down mechanisms. The proposed scheme combines a qualitative influence of top-down directed signals on the temporal dynamics of neuronal activity with a limited effect on the mean firing rate of the targeted neurons. As it gives an account of the system properties on the cellular level, it is possible to derive several experimentally testable predictions.  相似文献   
16.
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.Action Editor: Alain Destexhe  相似文献   
17.
18.
19.
Understanding the biophysical properties and functional organization of single neurons and how they process information is fundamental for understanding how the brain works. The primary function of any nerve cell is to process electrical signals, usually from multiple sources. Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin on neuronal processes and summate at particular locations to influence action potential initiation. This goal has not been achieved in any neuron due to technical limitations of measurements that employ electrodes. To overcome this drawback, it is highly desirable to complement the patch-electrode approach with imaging techniques that permit extensive parallel recordings from all parts of a neuron. Here, we describe such a technique - optical recording of membrane potential transients with organic voltage-sensitive dyes (Vm-imaging) - characterized by sub-millisecond and sub-micrometer resolution. Our method is based on pioneering work on voltage-sensitive molecular probes 2. Many aspects of the initial technology have been continuously improved over several decades 3, 5, 11. Additionally, previous work documented two essential characteristics of Vm-imaging. Firstly, fluorescence signals are linearly proportional to membrane potential over the entire physiological range (-100 mV to +100 mV; 10, 14, 16). Secondly, loading neurons with the voltage-sensitive dye used here (JPW 3028) does not have detectable pharmacological effects. The recorded broadening of the spike during dye loading is completely reversible 4, 7. Additionally, experimental evidence shows that it is possible to obtain a significant number (up to hundreds) of recordings prior to any detectable phototoxic effects 4, 6, 12, 13. At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the Vm-imaging technique. The current sensitivity permits multiple site optical recordings of Vm transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie.  相似文献   
20.
ABSTRACT Porphyrophora (Hemiptera: Coccomorpha: Margarodidae) is a genus of soil‐inhabiting scale insects. The antennal sensilla and their innervation in the first‐instar nymphs of Porphyrophora sophorae were studied using light microscopy and scanning and transmission electron microscopy to understand the function of these sensilla and determine the sensillar innervation feature on these small antennae. The results show that the six‐segmented antennae of these nymphs have 20–23 sensilla which can be morphologically classified into seven types, for example, one Böhm's bristle (Bb), one campaniform sensillum (Ca), one Johnston's organ (Jo), 13–16 aporous sensilla trichodea (St), two coeloconic sensilla (Co), one straight multiporous peg (Mp1), and one curvy multiporous peg (Mp2). According to their function, these sensilla can be categorized into three categories: mechanoreceptors, that is, Bb, Ca, Jo, and St; thermo/hygroreceptors, that is, Co only; and chemoreceptors, that is, Mp1 and Mp2. The dendrites that innervate the Mp1, Mp2, and Co sensilla combine to form a large nerve tract (NT1) in the antennal lumen. Because NT1 extends through and out of the antenna, the somata of these neurons are present in the lymph cavity of the insect's head. The dendrites that innervate the mechanoreceptors form another nerve tract (NT2). The somata of these neurons are located inside the scape and pedicel. J. Morphol. 277:1631–1647, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号