首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   75篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   15篇
  2015年   15篇
  2014年   17篇
  2013年   23篇
  2012年   23篇
  2011年   20篇
  2010年   16篇
  2009年   7篇
  2008年   13篇
  2007年   13篇
  2006年   8篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   10篇
  1997年   6篇
  1996年   8篇
  1995年   9篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   7篇
  1990年   13篇
  1989年   12篇
  1988年   10篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   8篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1974年   1篇
  1973年   10篇
  1972年   2篇
  1971年   2篇
  1927年   1篇
排序方式: 共有395条查询结果,搜索用时 30 毫秒
11.
12.

Background

Nasal gene expression profiling is a promising method to characterize COPD non-invasively. We aimed to identify a nasal gene expression profile to distinguish COPD patients from healthy controls. We investigated whether this COPD-associated gene expression profile in nasal epithelium is comparable with the profile observed in bronchial epithelium.

Methods

Genome wide gene expression analysis was performed on nasal epithelial brushes of 31 severe COPD patients and 22 controls, all current smokers, using Affymetrix Human Gene 1.0 ST Arrays. We repeated the gene expression analysis on bronchial epithelial brushes in 2 independent cohorts of mild-to-moderate COPD patients and controls.

Results

In nasal epithelium, 135 genes were significantly differentially expressed between severe COPD patients and controls, 21 being up- and 114 downregulated in COPD (false discovery rate?<?0.01). Gene Set Enrichment Analysis (GSEA) showed significant concordant enrichment of COPD-associated nasal and bronchial gene expression in both independent cohorts (FDRGSEA <?0.001).

Conclusion

We identified a nasal gene expression profile that differentiates severe COPD patients from controls. Of interest, part of the nasal gene expression changes in COPD mimics differentially expressed genes in the bronchus. These findings indicate that nasal gene expression profiling is potentially useful as a non-invasive biomarker in COPD.

Trial registration

ClinicalTrials.gov registration number NCT01351792 (registration date May 10, 2011), ClinicalTrials.gov registration number NCT00848406 (registration date February 19, 2009), ClinicalTrials.gov registration number NCT00807469 (registration date December 11, 2008).
  相似文献   
13.
14.
15.
Asthma is a common respiratory disease that is characterized by variable airways obstruction caused by acute and chronic bronchial inflammation; associated phenotypes include bronchial hyperresponsiveness (BHR), elevated total serum immunoglobulin E (IgE) levels, and skin tests positive to common allergens. Binding of interleukin-13 (IL13) or interleukin-4 (IL4) to the IL4 receptor (IL4R) induces the initial response for Th2 lymphocyte polarization. Both IL13 and IL4 are produced by Th2 cells and are capable of inducing isotype class-switching of B-cells to produce IgE after allergen exposure. These cytokines also share a common receptor component, IL4R alpha. We have investigated five IL4RA single-nucleotide polymorphisms in a population of Dutch families ascertained through a proband with asthma. By considering the probands and their spouses as an unrelated sample, we observed significant associations of atopy and asthma-related phenotypes with several IL4RA polymorphisms, including S478P and total serum IgE levels (P=.0007). A significant gene-gene interaction between S478P in IL4RA and the -1111 promoter variation in IL13, previously shown to be associated with BHR (P=.003), was detected. Individuals with the risk genotype for both genes were at almost five times greater risk for the development of asthma compared to individuals with both non-risk genotypes (P=.0004). These data suggest that variations in IL4RA contribute to elevated total serum IgE levels, and interaction between IL4RA and IL13 markedly increases an individual's susceptibility to asthma.  相似文献   
16.
In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant–plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.  相似文献   
17.

Background

Cigarette smoking is the most important risk factor for Chronic Obstructive Pulmonary Disease (COPD). Only a subgroup of smokers develops COPD and it is unclear why these individuals are more susceptible to the detrimental effects of cigarette smoking. The risk to develop COPD is known to be higher in individuals with familial aggregation of COPD. This study aimed to investigate if acute systemic and local immune responses to cigarette smoke differentiate between individuals susceptible or non-susceptible to develop COPD, both at young (18-40 years) and old (40-75 years) age.

Methods

All participants smoked three cigarettes in one hour. Changes in inflammatory markers in peripheral blood (at 0 and 3 hours) and in bronchial biopsies (at 0 and 24 hours) were investigated. Acute effects of smoking were analyzed within and between susceptible and non-susceptible individuals, and by multiple regression analysis.

Results

Young susceptible individuals showed significantly higher increases in the expression of FcγRII (CD32) in its active forms (A17 and A27) on neutrophils after smoking (p = 0.016 and 0.028 respectively), independently of age, smoking status and expression of the respective markers at baseline. Smoking had no significant effect on mediators in blood or inflammatory cell counts in bronchial biopsies. In the old group, acute effects of smoking were comparable between healthy controls and COPD patients.

Conclusions

We show for the first time that COPD susceptibility at young age associates with an increased systemic innate immune response to cigarette smoking. This suggests a role of systemic inflammation in the early induction phase of COPD.

Trial registration

Clinicaltrials.gov: NCT00807469

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0121-2) contains supplementary material, which is available to authorized users.  相似文献   
18.
The main mechanism causing catabolite repression by glucose and other carbon sources transported by the phosphotransferase system (PTS) in Escherichia coli involves dephosphorylation of enzyme IIAGlc as a result of transport and phosphorylation of PTS carbohydrates. Dephosphorylation of enzyme IIAGlc leads to 'inducer exclusion': inhibition of transport of a number of non-PTS carbon sources (e.g. lactose, glycerol), and reduced adenylate cyclase activity. In this paper, we show that the non-PTS carbon source glucose 6-phosphate can also cause inducer exclusion. Glucose 6-phosphate was shown to cause inhibition of transport of lactose and the non-metabolizable lactose analogue methyl-β- D -thiogalactoside (TMG). Inhibition was absent in mutants that lacked enzyme IIAGlc or were insensitive to inducer exclusion because enzyme IIAGlc could not bind to the lactose carrier. Furthermore, we showed that glucose 6-phosphate caused dephosphorylation of enzyme IIAGlc. In a mutant insensitive to enzyme IIAGlc-mediated inducer exclusion, catabolite repression by glucose 6-phosphate in lactose-induced cells was much weaker than that in the wild-type strain, showing that inducer exclusion is the most important mechanism contributing to catabolite repression in lactose-induced cells. We discuss an expanded model of enzyme IIAGlc-mediated catabolite repression which embodies repression by non- PTS carbon sources.  相似文献   
19.
2-Deoxygalactose is a specific substrate of the galactose permease. The apparent Km is about 500 micron, compared to 45 micron for galactose, whereas the maximal rate of uptake is one-half to one-third of that of galactose. None of the other galactose transport systems, including methyl beta-D-thiogalactosides I and II, the beta-methyl-galactoside permease, and both arabinose systems, is able to catalyze transport of 2-deoxygalactose to a significant extent. 2-Deoxygalactose can also be used to isolate mutants defective in galactose permease, since it is bacteriostatic. Colonies that grow with lactate, malate, or succinate as a carbon source in the presence of 0.5 to 2 mM 2-doexygalactose were found to be mostly galP mutants, lacking galactose permease. Spontaneous 2-deoxygalactose-resistant strains arose with a frequency of about 2 X 10(-6). galP mutants have also been derived from pts deletion mutants that require galactose permease for growth on glucose. Revertants have been obtained that have acquired the parental phenotype.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号