首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
12.
Understanding of the forces driving the structure of biotic communities has long been an important focus for ecology, with implications for applied and conservation science. To elucidate the factors driving phytoplankton genus richness in the Danish landscape, we analyzed data derived from late-summer samplings in 195 Danish lakes and ponds in a spatially-explicit framework. To account for the uneven sampling of lakes in the monitoring data, we performed 1,000 permutations. A random set of 131 lakes was assembled and a single sample was selected randomly for each lake at each draw and all the analyses were performed on permuted data 1,000 times. The local environment was described by lake water chemistry, lake morphology, land-use in lake catchments, and climate. Analysis of the effects of four groups of environmental factors on the richness of the main groups of phytoplankton revealed contrasting patterns. Lake water chemistry was the strongest predictor of phytoplankton richness for all groups, while lake morphology also had a strong influence on Bacillariophyceae, Cyanobacteria, Dinophyceae, and Euglenophyceae richness. Climate and land-use in catchments contributed only little to the explained variation in phytoplankton richness, although both factors had a significant effect on Bacillariophyceae richness. Notably, total nitrogen played a more important role for phytoplankton richness than total phosphorus. Overall, models accounted for ca. 30% of the variation in genus richness for all phytoplankton combined as well as the main groups separately. Local spatial structure (<30 km) in phytoplankton richness suggested that connectivity among lakes and catchment-scale processes might also influence phytoplankton richness in Danish lakes.  相似文献   
13.
Seyhan  K&#;bra  Nguyen  Tu N.  Akleylek  Sedat  Cengiz  Korhan 《Cluster computing》2022,25(3):1729-1748
Cluster Computing - The concept of the Internet of Things (IoT) arises due to the change in the characteristics and numbers of smart devices. Communication of things makes it important to ensure...  相似文献   
14.
Aquatic Ecology - Phytoplankton biomass, diversity, functional groups (FGs), and environmental parameters in three shallow lakes were evaluated to show the inter-annual fluctuations in...  相似文献   
15.
16.
c-Met, the receptor for Hepatocyte Growth Factor (HGF), overexpressed and deregulated in Hepatocellular Carcinoma (HCC). Caveolin 1 (CAV1), a plasma membrane protein that modulates signal transduction molecules, is also overexpressed in HCC. The aim of this study was to investigate biological and clinical significance of co-expression and activation of c-Met and CAV1 in HCC. We showed that c-Met and CAV1 were co-localized in HCC cells and HGF treatment increased this association. HGF-triggered c-Met activation caused a concurrent rise in both phosphorylation and expression of CAV1. Ectopic expression of CAV1 accelerated c-Met signaling, resulted in enhanced migration, invasion, and branching-morphogenesis. Silencing of CAV1 downregulated c-Met signaling, and decreased migratory/invasive capability of cells and attenuated branching morphogenesis. In addition, activation and co-localization of c-Met and CAV1 were elevated during hepatocarcinogenesis. In conclusion reciprocal activating crosstalk between c-Met and CAV1 promoted oncogenic signaling of c-Met contributed to the initiation and progression of HCC.  相似文献   
17.
Sah  Dinesh Kumar  Nguyen  Tu N.  Cengiz  Korhan  Dumba  Braulio  Kumar  Vikas 《Cluster computing》2022,25(3):1715-1727
Cluster Computing - The Industrial Internet of Things uses intelligent sensors to collect the physical properties of objects placed on a large area. It provides innovative service and network...  相似文献   
18.
  1. Water level and submerged macrophytes are critical players for the functioning of shallow lake ecosystems; understanding how waterbird communities respond to changes in both can have important implications for conservation and management. Here, we evaluated the effects of changes in water level and submerged macrophyte status on wintering waterbird community size, functional group abundances, functional diversity (FD), and community assembly by using a dataset compiled over 50 years.
  2. We built generalised linear models to evaluate the effects of water level and submerged macrophyte status on the above-listed attributes of the waterbird communities by using mid-winter waterbird censuses, water level measurements, and submerged macrophyte surveys, along with submerged macrophyte macrofossil records from two shallow lakes in Turkey. Using a relevant set of functional traits, we defined functional groups, calculated four FD measures, and simulated null distributions of the FD measures for assessing assembly rules.
  3. We found that macrophyte-dominated years had significantly higher abundances of waterbirds in one of the study lakes, and had more diving herbivores and omnivores in both lakes, while diving/scooping fish-eating waterbird abundance was lower in macrophyte-dominated years. Community size in Lake Beyşehir exhibited a negative association with water level; surprisingly, however, none of the functional group abundances and FD indices were significantly related to water level.
  4. In our study communities, standardised effect sizes of functional richness and functional dispersion—two indices that are particularly sensitive to community assembly processes—were mostly lower than those of randomly assembled communities, which implies functional clustering. Shifts to a scarce-macrophyte state were associated with increases in these two indices, possibly due to either changes in the relative strength of environmental filtering and limiting similarity in community assembly or sampling of transitional communities. Further studies covering a wider range of the trophic/macrophyte status spectrum are needed to be certain.
  5. The results of this study indicate that shifts between abundant and scarce-macrophyte states can have significant effects on wintering waterbird abundances, FD and community assembly. The results also suggest that shallow lakes in macrophyte-dominated states can support more wintering waterbirds, especially diving omnivores, some of which are globally threatened.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号