首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   0篇
  国内免费   2篇
  2022年   2篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   12篇
  2010年   7篇
  2009年   16篇
  2008年   16篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
11.
We show the existence of a periodic solution in which four species coexist in competition for three essential resources in the standard model of resource competition. By assuming that species i is limited by resource i for each i near the positive equilibrium, and that the matrix of contents of resources in species is a combination of cyclic matrix and a symmetric matrix, we obtain an asymptotically stable periodic solution of three species on three resources via Hopf bifurcation. A simple bifurcation argument is then employed which allows us to add a fourth species. In principle, the argument can be continued to obtain a periodic solution adding one new species at a time so long as asymptotic stability can be assured at each step. Numerical simulations are provided to illustrate our analytical results. The results of this paper suggest that competition can generate coexistence of species in the form of periodic cycles, and that the number of coexisting species can exceed the number of resources in a constant and homogeneous environment.  相似文献   
12.
Parametric analysis of the ratio-dependent predator–prey model   总被引:3,自引:0,他引:3  
We present a complete parametric analysis of stability properties and dynamic regimes of an ODE model in which the functional response is a function of the ratio of prey and predator abundances. We show the existence of eight qualitatively different types of system behaviors realized for various parameter values. In particular, there exist areas of coexistence (which may be steady or oscillating), areas in which both populations become extinct, and areas of "conditional coexistence" depending on the initial values. One of the main mathematical features of ratio-dependent models, distinguishing this class from other predator-prey models, is that the Origin is a complicated equilibrium point, whose characteristics crucially determine the main properties of the model. This is the first demonstration of this phenomenon in an ecological model. The model is investigated with methods of the qualitative theory of ODEs and the theory of bifurcations. The biological relevance of the mathematical results is discussed both regarding conservation issues (for which coexistence is desired) and biological control (for which extinction is desired).  相似文献   
13.
We consider a predator-prey model in a two-patch environment and assume that migration between patches is faster than prey growth, predator mortality and predator-prey interactions. Prey (resp. predator) migration rates are considered to be predator (resp. prey) density-dependent. Prey leave a patch at a migration rate proportional to the local predator density. Predators leave a patch at a migration rate inversely proportional to local prey population density. Taking advantage of the two different time scales, we use aggregation methods to obtain a reduced (aggregated) model governing the total prey and predator densities. First, we show that for a large class of density-dependent migration rules for predators and prey there exists a unique and stable equilibrium for migration. Second, a numerical bifurcation analysis is presented. We show that bifurcation diagrams obtained from the complete and aggregated models are consistent with each other for reasonable values of the ratio between the two time scales, fast for migration and slow for local demography. Our results show that, under some particular conditions, the density dependence of migrations can generate a limit cycle. Also a co-dim two Bautin bifurcation point is observed in some range of migration parameters and this implies that bistability of an equilibrium and limit cycle is possible.  相似文献   
14.
In Rosenzweig-MacArthur models of predator-prey dynamics, Allee effects in prey usually destabilize interior equilibria and can suppress or enhance limit cycles typical of the paradox of enrichment. We re-evaluate these conclusions through a complete classification of a wide range of Allee effects in prey and predator's functional response shapes. We show that abrupt and deterministic system collapses not preceded by fluctuating predator-prey dynamics occur for sufficiently steep type III functional responses and strong Allee effects (with unstable lower equilibrium in prey dynamics). This phenomenon arises as type III functional responses greatly reduce cyclic dynamics and strong Allee effects promote deterministic collapses. These collapses occur with decreasing predator mortality and/or increasing susceptibility of the prey to fall below the threshold Allee density (e.g. due to increased carrying capacity or the Allee threshold itself). On the other hand, weak Allee effects (without unstable equilibrium in prey dynamics) enlarge the range of carrying capacities for which the cycles occur if predators exhibit decelerating functional responses. We discuss the results in the light of conservation strategies, eradication of alien species, and successful introduction of biocontrol agents.  相似文献   
15.
Zigzagging: theoretical insights on climbing strategies   总被引:1,自引:0,他引:1  
Human and animal trails on steep hillsides often exhibit dramatic switchbacks and shortcuts. Helbing et al. have recently examined the emergence of human trail systems on flat terrains while Minetti and Margaria established the effect of gradients on human metabolic efficiency. In this paper we use these ideas to develop a semi-quantitative theoretical model of the behaviour of humans moving on a terrain with relief. The model determines the direction of movement by minimising metabolic cost per unit of distance in a desired direction. The structure of the theory resembles the Landau Theory of Phase Transitions, much used in theoretical physics. We find that both hairpin bends (switchbacks) and shortcuts appear as efficient strategies for downhill walkers, while uphill walkers retain switchbacks. For weakly inclined slopes, the best strategy involves walking directly uphill or downhill. For sufficiently steep slopes, however, we find that the best strategy should undergo a transition to a broken symmetry solution corresponding to the switchback trail patterns typical of rugged environments. The critical slope at which this transition takes place should be less steep for uphill and downhill walkers. The theory should be amenable to empirical investigation. Amongst other applications, this model will enable us to generalize the work of previous authors to real landscapes, eventually permitting the reconstruction of ancient patterns of movement in archaeological landscapes.  相似文献   
16.
主要考虑了一类三分子自催化反应扩散系统.在齐次Dirichlet和Robin边界条件下,当反应率c适当小,系统没有共存态;当c适当大,系统至少有一个共存态;当c充分大,系统有唯一渐近稳定的共存态.特别地,在一维空间上共存态是唯一的.在齐次Neumann边界条件下系统是一个简单系统.  相似文献   
17.
该文对一个海洋病毒感染模型进行研究,分析其动力学行为,发现系统的动力性受病毒复制因素的影响较大,找到病毒复制因素的阈值,研究系统平衡点的存在性,稳定性,系统持久性及分支的产生.这对海洋生态研究具有一定意义.  相似文献   
18.
In vitro angiogenesis assays have shown that tubulogenesis of endothelial cells within biogels, like collagen or fibrin gels, only appears for a critical range of experimental parameter values. These experiments have enabled us to develop and validate a theoretical model in which mechanical interactions of endothelial cells with extracellular matrix influence both active cell migration--haptotaxis--and cellular traction forces. Depending on the number of cells, cell motility and biogel rheological properties, various 2D endothelial patterns can be generated, from non-connected stripe patterns to fully connected networks, which mimic the spatial organization of capillary structures. The model quantitatively and qualitatively reproduces the range of critical values of cell densities and fibrin concentrations for which these cell networks are experimentally observed. We illustrate how cell motility is associated to the self-enhancement of the local traction fields exerted within the biogel in order to produce a pre-patterning of this matrix and subsequent formation of tubular structures, above critical thresholds corresponding to bifurcation points of the mathematical model. The dynamics of this morphogenetic process is discussed in the light of videomicroscopy time lapse sequences of endothelial cells (EAhy926 line) in fibrin gels. Our modeling approach also explains how the progressive appearance and morphology of the cellular networks are modified by gradients of extracellular matrix thickness.  相似文献   
19.
20.
We present a model of the human elbow and study the problem of existence and stability of equilibrium states. Our main goal is to demonstrate that stable equilibrium states exist just on grounds of the mechanical properties of the muscles and the skeleton. In particular, additional control mechanisms such as reflexes are not necessary to obtain stability. We assume that the activation of flexor and extensor muscles is constant and such that the right angle is an equilibrium state. We give a complete bifurcation diagram of all equilibrium states in terms of the elbow angle, the activation of the muscles and the mass of a load. Moreover, we define a dimensionless model parameter which allows to determine whether or not there are stable equilibria at an angle of ninety degrees. It turns out that the dependency of the muscle forces on the length of the muscles is the crucial factor for the stability of such an equilibrium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号