首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   110篇
  国内免费   33篇
  2024年   1篇
  2023年   16篇
  2022年   15篇
  2021年   30篇
  2020年   30篇
  2019年   22篇
  2018年   37篇
  2017年   20篇
  2016年   32篇
  2015年   30篇
  2014年   25篇
  2013年   48篇
  2012年   23篇
  2011年   31篇
  2010年   15篇
  2009年   49篇
  2008年   41篇
  2007年   48篇
  2006年   49篇
  2005年   36篇
  2004年   25篇
  2003年   50篇
  2002年   32篇
  2001年   22篇
  2000年   41篇
  1999年   38篇
  1998年   30篇
  1997年   27篇
  1996年   31篇
  1995年   32篇
  1994年   31篇
  1993年   26篇
  1992年   17篇
  1991年   20篇
  1990年   17篇
  1989年   12篇
  1988年   16篇
  1987年   7篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
排序方式: 共有1120条查询结果,搜索用时 265 毫秒
81.
Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra‐ and inter‐specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non‐structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought‐tolerant trees is related to higher NSC concentration and Es. We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species.  相似文献   
82.
83.
Trees are exceptional organisms that have evolved over some 385 million years and have overtaken other plants in order to harvest light first. However, this advantage comes with a cost: trees must transport water all the way up to their crowns and inherent physical limitations make them vulnerable to water deficits. Because climate change scenarios predict more frequent extreme drought events, trees will increasingly need to cope with water stress. Recent occurrences of climate change‐type droughts have had severe impacts on several forest ecosystems. Initial experimental studies have been undertaken and show that stomatal control of water loss hinders carbon assimilation and could lead to starvation during droughts. Other mechanisms of drought‐induced mortality are catastrophic xylem dysfunction, impeded long‐distance transport of carbohydrates (translocation) and also symplastic failure (cellular breakdown). However, direct empirical support is absent for either hypothesis. More experimental studies are necessary to increase our understanding of these processes and to resolve the mystery of drought‐related tree mortality. Instead of testing the validity of particular hypothesis as mechanisms of drought‐induced tree mortality, future research should aim at revealing the temporal dynamics of these mechanisms in different species and over a gradient of environmental conditions. Only such studies will reveal whether the struggle for light will become a struggle for water and/or for carbon in drought‐affected areas.  相似文献   
84.
A population of the xylem-feeding spittlebug, Neophilaenus lineatus, on blocks of natural vegetation transferred to large hemispherical chambers was studied over two generations with continuous exposure to elevated CO2 (600 ppm). The third generation was transferred from the blocks to potted Juncus squarrosus to enable measurements of fecundity. The principal food plant throughout was Juncus squarrosus. Survival of the nymphs was reduced by more than 20% in elevated CO2 relative to ambient (350 ppm) in both years of the main experiment. Elevated CO2 also delayed development by one or more nymphal instars in each year. Fecundity was not significantly affected. The C/N ratio of whole Juncus leaves was increased in elevated CO2 and the transpiration rates of the plants were reduced. These changes may have been responsible for the effect of elevated CO2 on spittlebug performance. However, other factors such as plant architecture and microclimate may also be important.  相似文献   
85.
In order to create trees in which cellulose, the most abundant component in biomass, can be enzymatically hydrolyzed highly for the production of bioethanol, we examined the saccharification of xylem from several transgenic poplars, each overexpressing either xyloglucanase, cellulase, xylanase, or galactanase. The level of cellulose degradation achieved by a cellulase preparation was markedly greater in the xylem overexpressing xyloglucanase and much greater in the xylems overexpressing xylanase and cellulase than in the xylem of the wild-type plant. Although a high degree of degradation occurred in all xylems at all loci, the crystalline region of the cellulose microfibrUs was highly degraded in the xylem overexpressing xyloglucanase. Since the complex between microfibrils and xyloglucans could be one region that is particularly resistant to cellulose degradation, loosening xyloglucan could facilitate the enzymatic hydrolysis of cellulose in wood.  相似文献   
86.
* Root respiration, stomatal conductance, leaf transpiration and photosynthetic rates were measured in phytotron and field-grown plants following the application of 5 or 10 nM lumichrome, 10 nM ABA (abscisic acid) and 10 ml of 0.2 OD600 infective rhizobial cells. * Providing soybean and cowpea roots with their respective homologous rhizobia and/or purified lumichrome increased the concentration of this molecule in xylem sap and leaf extracts. Relative to control, rhizobial inoculation and lumichrome application significantly increased root respiration in maize, decreased it in lupin, but had no effect on the other test species. * Applying either lumichrome (10 nM), infective rhizobial cells or ABA to roots of plants for 44 h in growth chambers altered leaf stomatal conductance and transpiration in cowpea, lupin, soybean, Bambara groundnut and maize, but not in pea or sorghum. Where stomatal conductance was increased by lumichrome application or rhizobial inoculation, it resulted in increased leaf transpiration relative to control plants. Treating roots of field plants of cowpea with this metabolite up to 63 d after planting showed decreased stomatal conductance, which affected CO2 intake and reduction by Rubisco. * The effect of rhizobial inoculation closely mirrored that of lumichrome application to roots, indicating that rhizobial effects on these physiological activities were most likely due to lumichrome released into the rhizosphere.  相似文献   
87.
Freezing sensitivity of leaves and xylem was examined in four co-occurring Mediterranean oaks (Quercus spp.) grown in a common garden to determine whether freezing responses of leaves and xylem were coordinated and could be predicted by leaf lifespan. Freezing-induced embolism and loss of photosynthetic function were measured after overnight exposure to a range of subzero temperatures in both summer and winter. Both measures were found to be dependent on minimum freezing temperature and were correlated with leaf lifespan and vessel diameter. The dependence of xylem embolism on minimum freezing temperature may result from the decline in water potential with ice temperature that influences the redistribution of water during freezing and leads to an increase in xylem tension. Winter acclimatization had a relatively small effect on the vulnerability to freezing-induced embolism, although leaf photosynthetic function showed a strong acclimatization response, particularly in the two evergreen species. Quercus ilex, the species with the longest leaf lifespan and narrowest vessel diameters, showed the highest freezing tolerance. This helps explain its ability to inhabit a broad range throughout the Mediterranean region. By contrast, the inability of the deciduous oaks to maintain photosynthetic and vascular function throughout the winter indicates a competitive disadvantage that may prevent them from expanding their ranges.  相似文献   
88.
Elms containing narrow and scattered vessels have been reported to be more resistant to Ophiostoma novo-ulmi (Dutch elm disease pathogen) than elms with large and contiguous vessels. However, recent measurements in Ulmus pumila and U. minor showed a contrary trend. The pin method was applied to 4-yr-old branches of eight clones planted in Madrid. During 2002, radial growth increments and vessel diameters were measured monthly, and beetle trapping was undertaken weekly. U. minor formed larger vessels at the beginning of the season, coinciding with a peak of captured beetles, but, up to June 15, vessels were larger for U. pumila. The number of vessels per group, the transversal area per vessel group, and the mean theoretical hydraulic conductances were significantly higher for U. minor on most dates. Researchers should take into consideration the seasonal changes in vessel size. The results highlight that seasonal variation of vessel diameters and hydraulic parameters, in combination with beetle abundance, are the main factors that could explain the different susceptibility of both elm species to O. novo-ulmi.  相似文献   
89.
In angiosperms, lignin is built from two main monomers, coniferyl and sinapyl alcohol, which are incorporated respectively as G and S units in the polymer. The last step of their synthesis has so far been considered to be performed by a family of dimeric cinnamyl alcohol dehydrogenases (CAD2). However, previous studies on Eucalyptus gunnii xylem showed the presence of an additional, structurally unrelated, monomeric CAD form named CAD1. This form reduces coniferaldehyde to coniferyl alcohol, but is inactive on sinapaldehyde. In this paper, we report the functional characterization of CAD1 in tobacco (Nicotiana tabacum L.). Transgenic tobacco plants with reduced CAD1 expression were obtained through an RNAi strategy. These plants displayed normal growth and development, and detailed biochemical studies were needed to reveal a role for CAD1. Lignin analyses showed that CAD1 down-regulation does not affect Klason lignin content, and has a moderate impact on G unit content of the non-condensed lignin fraction. However, comparative metabolic profiling of the methanol-soluble phenolic fraction from basal xylem revealed significant differences between CAD1 down-regulated and wild-type plants. Eight compounds were less abundant in CAD1 down-regulated lines, five of which were identified as dimers or trimers of monolignols, each containing at least one moiety derived from coniferyl alcohol. In addition, 3-trans-caffeoyl quinic acid accumulated in the transgenic plants. Together, our results support a significant contribution of CAD1 to the synthesis of coniferyl alcohol in planta, along with the previously characterized CAD2 enzymes. Sequences of NtCAD1-1 and NtCAD1-7 were deposited in GenBank under accession numbers AY911854 and AY911855, respectively.  相似文献   
90.
嫁接对薄皮甜瓜养分吸收、伤流液中激素含量和产量的影响   总被引:16,自引:0,他引:16  
以薄皮甜瓜品种‘玉美人’作接穗,以白籽南瓜‘圣砧一号’为砧木进行嫁接,以自根苗为对照的结果表明,嫁接植株的南瓜根系主动吸收能力增强,其伤流量比自根植株的大,植株吸收氮钾的能力高于自根植株,而吸收磷的能力则有所降低。伤流液中玉米素(ZT)、赤霉素(GAs)和脱落酸(ABA)的浓度均低于自根植株,但ZT和GA的含量高于自根苗,而ABA的含量低于自根苗。嫁接植株的增产效果显著,其平均单瓜重和667m^2产量均高于自根植株。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号