首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   110篇
  国内免费   33篇
  2024年   1篇
  2023年   16篇
  2022年   15篇
  2021年   30篇
  2020年   30篇
  2019年   22篇
  2018年   37篇
  2017年   20篇
  2016年   32篇
  2015年   30篇
  2014年   25篇
  2013年   48篇
  2012年   23篇
  2011年   31篇
  2010年   15篇
  2009年   49篇
  2008年   41篇
  2007年   48篇
  2006年   49篇
  2005年   36篇
  2004年   25篇
  2003年   50篇
  2002年   32篇
  2001年   22篇
  2000年   41篇
  1999年   38篇
  1998年   30篇
  1997年   27篇
  1996年   31篇
  1995年   32篇
  1994年   31篇
  1993年   26篇
  1992年   17篇
  1991年   20篇
  1990年   17篇
  1989年   12篇
  1988年   16篇
  1987年   7篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
排序方式: 共有1120条查询结果,搜索用时 15 毫秒
61.
The irregular xylem 2 (irx2) mutant of Arabidopsis thaliana exhibits a cellulose deficiency in the secondary cell wall, which is brought about by a point mutation in the KORRIGAN (KOR) beta,1-4 endoglucanase (beta,1-4 EGase) gene. Measurement of the total crystalline cellulose in the inflorescence stem indicates that the irx2 mutant contains approximately 30% of the level present in the wild type (WT). Fourier-Transform Infra Red (FTIR) analysis, however, indicates that there is no decrease in cellulose in primary cell walls of the cortical and epidermal cells of the stem. KOR expression is correlated with cellulose synthesis and is highly expressed in cells synthesising a secondary cell wall. Co-precipitation experiments, using either an epitope-tagged form of KOR or IRX3 (AtCesA7), suggest that KOR is not an integral part of the cellulose synthase complex. These data are supported by immunolocalisation of KOR that suggests that KOR does not localise to sites of secondary cell wall deposition in the developing xylem. The defect in irx2 plant is consistent with a role for KOR in the later stages of secondary cell wall formation, suggesting a role in processing of the growing microfibrils or release of the cellulose synthase complex.  相似文献   
62.
The influence of the auxin transport inhibitors naphthylphthalamic acid (NPA) and methyl-2-chloro-9-hydroxyflurene-9-carboxylate (CF), as well as the gaseous hormone ethylene on cambial differentiation of poplar was determined. NPA treatment induced clustering of vessels and increased vessel length. CF caused a synchronized differentiation of cambial cells into either vessel elements or fibres. The vessels in CF-treated wood were significantly smaller and fibre area was increased compared with controls. Under the influence of ethylene, the cambium produced more parenchyma, shorter fibres and shorter vessels than in controls. Since poplar is the model tree for molecular biology of wood formation, the modulation of the cambial differentiation of poplar towards specific cell types opens an avenue to study genes important for the development of vessels or fibres.  相似文献   
63.
Unravelling cell wall formation in the woody dicot stem   总被引:20,自引:0,他引:20  
Populus is presented as a model system for the study of wood formation (xylogenesis). The formation of wood (secondary xylem) is an ordered developmental process involving cell division, cell expansion, secondary wall deposition, lignification and programmed cell death. Because wood is formed in a variable environment and subject to developmental control, xylem cells are produced that differ in size, shape, cell wall structure, texture and composition. Hormones mediate some of the variability observed and control the process of xylogenesis. High-resolution analysis of auxin distribution across cambial region tissues, combined with the analysis of transgenic plants with modified auxin distribution, suggests that auxin provides positional information for the exit of cells from the meristem and probably also for the duration of cell expansion. Poplar sequencing projects have provided access to genes involved in cell wall formation. Genes involved in the biosynthesis of the carbohydrate skeleton of the cell wall are briefly reviewed. Most progress has been made in characterizing pectin methyl esterases that modify pectins in the cambial region. Specific expression patterns have also been found for expansins, xyloglucan endotransglycosylases and cellulose synthases, pointing to their role in wood cell wall formation and modification. Finally, by studying transgenic plants modified in various steps of the monolignol biosynthetic pathway and by localizing the expression of various enzymes, new insight into the lignin biosynthesis in planta has been gained.  相似文献   
64.
Water deficits and hydraulic limits to leaf water supply   总被引:30,自引:1,他引:29  
Many aspects of plant water use -- particularly in response to soil drought -- may have as their basis the alteration of hydraulic conductance from soil to canopy. The regulation of plant water potential (Psi) by stomatal control and leaf area adjustment may be necessary to maximize water uptake on the one hand, while avoiding loss of hydraulic contact with the soil water on the other. Modelling the changes in hydraulic conductance with pressure gradients in the continuum allows the prediction of water use as a function of soil environment and plant architectural and xylem traits. Large differences in water use between species can be attributed in part to differences in their 'hydraulic equipment' that is presumably optimized for drawing water from a particular temporal and spatial niche in the soil environment. A number of studies have identified hydraulic limits as the cause of partial or complete foliar dieback in response to drought. The interactions between root:shoot ratio, rooting depth, xylem properties, and soil properties in influencing the limits to canopy water supply can be used to predict which combinations should optimize water use in a given circumstance. The hydraulic approach can improve our understanding of the coupling of canopy processes to soil environment, and the adaptive significance of stomatal behaviour.  相似文献   
65.
This paper describes changes in leaf water status and in stem, petiole and leaf blade hydraulics preceding leaf senescence and shedding in Castanea sativa L. (chestnut). Measurements of maximum diurnal leaf conductance to water vapour (gL), minimum water potential (L), hydraulic conductance per unit leaf surface area of stems (KSL), petioles (KPL) and leaf blades (KLL) and number of functional conduits and inside diameter distribution were performed in June, September and October 1999. In September, still green leaves had undergone some dehydration as indicated by decreased gL (by 75 %) and L with respect to June. In the same time, KSL decreased by 88 %, while KPL and KLL decreased by 50 % and 20 % of the conduits of stems and 10 % of the petioles (all belonging to the widest diameter range) were no longer functioning, causing a decrease in the theoretical flow by 82 % in stems and 27 % in petioles. Stem xylem blockage was apparently due to tyloses growing into conduits. We advance the hypothesis that the entire process of leaf shedding and winter rest may be initiated by extensive stem embolism occurring during the summer.  相似文献   
66.
67.
A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.  相似文献   
68.
The effects of placing solid implants containing Fe sulfate in branches of Fe-deficient pear and peach trees on the composition of the xylem sap have been studied. Iron sulfate implants are commercially used in northeastern Spain to control iron chlorosis in fruit trees. Implants increased Fe concentrations and decreased organic acid concentrations in the xylem sap, whereas xylem sap pH was only moderately changed. The citrate to Fe ratios decreased markedly after implants, therefore improving the possibility that Fe could be reduced by the leaf plasma membrane enzyme reductase, known to be inhibited by high citrate/Fe ratios. In peach, the effects of the implants could be observed many months post treatment. In pear, some effects were still observed one year after the implants had taken place. Results obtained indicate that solid Fe sulfate implants were capable of significantly changing the chemical composition of the xylem sap in fruit trees.  相似文献   
69.
70.
The feeding of spittlebug nymphs (Philaenus spumarius) from mature xylem vessels was studied by optical and cryo-analytical scanning electron microscopy. Feeding did not produce xylem embolisms and vessels remained liquid-filled during the day. Saliva secreted by the insect forms a hardened lining (salivary sheath) between the stylet bundle and the plant tissues. This sheath is continuous through the hole made by the stylets as they enter a vessel, and it extends into the vessel and along its periphery beyond the breach. The sheath is heterogeneous, with a thin outer layer adjoining the plant tissues and a thicker layer that contacts the stylet bundle. Both layers give positive histochemical reactions for proteins and, in fresh tissues, contain a red, strongly autofluorescent pigment, possibly condensed tannin derived from the plant (which is lost during tissue preparation), and other phenyl propanoid compounds, which are retained and which may produce the intense reaction of the periodic-acid-Schiff's-positive inner layer. It is concluded that the salivary sheath allows the insects to feed from functioning vessels without embolizing them or losing xylem fluid to the surrounding tissues. These findings and others in the entomological literature indicate low daytime tensions in the xylem conduits of the host plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号