首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48809篇
  免费   3646篇
  国内免费   2241篇
  2024年   85篇
  2023年   867篇
  2022年   872篇
  2021年   1706篇
  2020年   1652篇
  2019年   2147篇
  2018年   1866篇
  2017年   1287篇
  2016年   1369篇
  2015年   1751篇
  2014年   2704篇
  2013年   3645篇
  2012年   1944篇
  2011年   2403篇
  2010年   1784篇
  2009年   2055篇
  2008年   2070篇
  2007年   2232篇
  2006年   2002篇
  2005年   1858篇
  2004年   1696篇
  2003年   1486篇
  2002年   1439篇
  2001年   1213篇
  2000年   1014篇
  1999年   920篇
  1998年   904篇
  1997年   839篇
  1996年   790篇
  1995年   735篇
  1994年   708篇
  1993年   659篇
  1992年   631篇
  1991年   581篇
  1990年   455篇
  1989年   445篇
  1988年   418篇
  1987年   339篇
  1986年   294篇
  1985年   365篇
  1984年   458篇
  1983年   261篇
  1982年   347篇
  1981年   320篇
  1980年   248篇
  1979年   230篇
  1978年   168篇
  1977年   111篇
  1976年   118篇
  1974年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
92.
93.
《Molecular cell》2020,77(4):748-760.e9
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
  相似文献   
94.
Atherogenesis is potentiated by metabolic abnormalities that contribute to a heightened state of systemic inflammation resulting in endothelial dysfunction. However, early functional changes in endothelium that signify an individual''s level of risk are not directly assessed clinically to help guide therapeutic strategy. Moreover, the regulation of inflammation by local hemodynamics contributes to the non-random spatial distribution of atherosclerosis, but the mechanisms are difficult to delineate in vivo. We describe a lab-on-a-chip based approach to quantitatively assay metabolic perturbation of inflammatory events in human endothelial cells (EC) and monocytes under precise flow conditions. Standard methods of soft lithography are used to microfabricate vascular mimetic microfluidic chambers (VMMC), which are bound directly to cultured EC monolayers.1 These devices have the advantage of using small volumes of reagents while providing a platform for directly imaging the inflammatory events at the membrane of EC exposed to a well-defined shear field. We have successfully applied these devices to investigate cytokine-,2 lipid-3, 4 and RAGE-induced5 inflammation in human aortic EC (HAEC). Here we document the use of the VMMC to assay monocytic cell (THP-1) rolling and arrest on HAEC monolayers that are conditioned under differential shear characteristics and activated by the inflammatory cytokine TNF-α. Studies such as these are providing mechanistic insight into atherosusceptibility under metabolic risk factors.  相似文献   
95.
Restriction fragment length polymorphisms (RFLPs) were described for the porcine loci for β-glucosidase (GBA) and the β-polypeptide 1 of the Na+, K+-transporting ATPase (ATP1B1). Linkage analyses using a three-generation pedigree provided evidence for the assignment of ATP1B1, GBA and two microsatellite loci (S0001 and S0067) to a previously described linkage group comprising the loci for blood group L (EAL) and an anonymous microsatellite (S0097). The linear order of the six markers was determined with confidence by multipoint analyses and the length of the linkage group was estimated at 88 CM. This linkage group was assigned to pig chromosome 4 on the basis of a previous physical localization of the ATP1B1 gene. In situ hybridization data for S0001 presented in this study were consistent with a localization on chromosome 4 and suggested a regional localization to 4pl2-pl3. The present study reveals conflicting data concerning the genetic localization of the K88 loci controlling the expression of the receptors for the E. coli pilus antigens. One group has reported data suggesting a loose linkage between K88 and EAL, now mapped to chromosome 4, whereas two other groups have found linkage between K88 and the transferrin locus (TF), mapped to chromosome 13 by in situ hybridization.  相似文献   
96.
97.
Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.  相似文献   
98.
99.
100.
Changsung Kim 《BMB reports》2015,48(5):256-265
Cardiovascular and neurodegenerative diseases are major health threats in many developed countries. Recently, target tissues derived from human embryonic stem (hES) cells and induced pluripotent stem cells (iPSCs), such as cardiomyocytes (CMs) or neurons, have been actively mobilized for drug screening. Knowledge of drug toxicity and efficacy obtained using stem cell-derived tissues could parallel that obtained from human trials. Furthermore, iPSC disease models could be advantageous in the development of personalized medicine in various parts of disease sectors. To obtain the maximum benefit from iPSCs in disease modeling, researchers are now focusing on aging, maturation, and metabolism to recapitulate the pathological features seen in patients. Compared to pediatric disease modeling, adult-onset disease modeling with iPSCs requires proper maturation for full manifestation of pathological features. Herein, the success of iPSC technology, focusing on patient-specific drug treatment, maturation-based disease modeling, and alternative approaches to compensate for the current limitations of patient iPSC modeling, will be further discussed. [BMB Reports 2015; 48(5): 256-265]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号