首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4037篇
  免费   245篇
  国内免费   942篇
  2023年   38篇
  2022年   39篇
  2021年   87篇
  2020年   102篇
  2019年   84篇
  2018年   91篇
  2017年   98篇
  2016年   136篇
  2015年   117篇
  2014年   134篇
  2013年   240篇
  2012年   139篇
  2011年   176篇
  2010年   132篇
  2009年   172篇
  2008年   189篇
  2007年   198篇
  2006年   216篇
  2005年   208篇
  2004年   217篇
  2003年   208篇
  2002年   207篇
  2001年   215篇
  2000年   189篇
  1999年   180篇
  1998年   114篇
  1997年   123篇
  1996年   111篇
  1995年   108篇
  1994年   103篇
  1993年   122篇
  1992年   88篇
  1991年   100篇
  1990年   71篇
  1989年   75篇
  1988年   71篇
  1987年   40篇
  1986年   32篇
  1985年   45篇
  1984年   37篇
  1983年   20篇
  1982年   18篇
  1981年   22篇
  1980年   22篇
  1979年   19篇
  1978年   15篇
  1977年   13篇
  1976年   12篇
  1975年   10篇
  1974年   10篇
排序方式: 共有5224条查询结果,搜索用时 88 毫秒
51.
Take-all is a world-wide root-rotting disease of cereals. The causal organism of take-all of wheat is the soil-borne fungus Gaeumannomyces graminis var tritici (Ggt). No resistance to take-all, worthy of inclusion in a plant breeding programme, has been discovered in wheat but the severity of take-all is increased in host plants whose tissues are deficient for manganese (Mn). Take-all of wheat will be decreased by all techniques which lift Mn concentrations in shoots and roots of Mn-deficient hosts to adequate levels. Wheat seedlings were grown in a Mn-deficient calcareous sand in small pots and inoculated with four field isolates of Ggt. Infection by three virulent isolates was increased under conditions which were Mn deficient for the wheat host but infection by a weakly virulent isolate, already low, was further decreased. Only the three virulent isolates caused visible oxidation of Mn in vitro. The sensitivity of Ggt isolates to manganous ions in vitro did not explain the extent of infection they caused on wheat hosts. In a similar experiment four Australian wheat genotypes were grown in the same Mn-deficient calcareous sand and inoculated with one virulent isolate of Ggt. Two genotypes were inefficient at taking up manganese and were very susceptible to take-all, one was very efficient at taking up manganese and was resistant to take-all, and the fourth genotype was intermediate for both characters. All genotypes were equally resistant under Mn-adequate conditions.  相似文献   
52.
A K/Rb isotope dilution method was used to determine the uptake of K from undisturbed subsoils. Rb was applied to the topsoil (0–30 cm) to trace the K taken up from the topsoil by crops. The K/Rb ratio in the crops increases when roots contact the Rb-free subsoil. This change in the K/Rb ratio enables the calculation of the uptake of K from the subsoil. Results of 34 field experiments on loess-parabrown soils in N. Germany showed that the subsoil (>30 cm) supplied, on average, 34% of the total K uptake by spring wheat (range 9–70%). The range between the experimental sites is considered in relation to the contents of K in the top and subsoils (as extracted by 0.025 N CaCl2 solution), the proportion of the total root length in the subsoils, and competition for K between roots in the top and subsoil. In subsoils with similar K contents, uptake from the subsoil decreased significantly from 65 to 21% of total K uptake, as K contents in the topsoils increased from 4 to 8 mg K/100 g. On sites with the same K contents in topsoils (9 mg K/100 g), the subsoil supplied 12 to 61% of total K uptake as the K contents of the subsoil increased from 2 to 27 mg K/100 g. The contribution of uptake of K from the subsoil increased with the development of the crop, from 8% at first node stage to 35% at ear emergence, as the proportion of total root length in the subsoil increased. High root length densities in the topsoil (9 cm/cm3) resulted in competition for K between roots and increased uptake of K from the subsoil.  相似文献   
53.
Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe(III) compounds by release of phytosiderophores (PS) which mobilize Fe(III) by chelation. In most graminaceous species Fe deficiency increases the rate of PS release from roots by a factor of 10–20, but in some species, for example sorghum, this increase is much less. The chemical nature of PS can differ between species and even cultivars.The various PS are similarly effective as the microbial siderophore Desferal (ferrioxamine B methane sulfonate) in mobilizing Fe(III) from a calcareous soil. Under the same conditions the synthetic chelator DTPA (diaethylenetriamine pentaacetic acid) is ineffective.The rate of Fe(III)PS uptake by roots of graminaceous species increases by a factor of about 5 under Fe deficiency. In contrast, uptake of Fe from both synthetic and microbial Fe(III) chelates is much lower and not affected by the Fe nutritional status of the plants. This indicates that in graminaceous species under Fe deficiency a specific uptake system for FePS is activated. In contrast, the specific uptake system for FePS is absent in dicots. In a given graminaceous species the uptake rates of the various FePS are similar, but vary between species by a factor of upto 3. In sorghum, despite the low rate of PS release, the rate of FePS uptake is particularly high.The results indicate that release of PS and subsequent uptake of FePS are under different genetic control. The high susceptibility of sorghum to Fe deficiency (lime-chlorosis) is most probably caused by low rates of PS release in the early seedling stage. Therefore in sorghum, and presumably other graminaceous species also, an increase in resistance to lime chlorosis could be best achieved by breeding for cultivars with high rates of PS release. In corresponding screening procedures attention should be paid to the effects of iron nutritional status and daytime on PS release as well as on rapid microbial degradation of PS.  相似文献   
54.
Summary Isoelectric focusing (IEF) of extracts from different tissues of hexaploid wheat cv Chinese Spring provided a method of distinguishing and identifying the four known, and one newly discovered, sets of genes encoding peroxidase isozyme production.Per-1, carried on the short arms of homoeologous group 1 chromosomes, shows a high degree of conservation and is active in coleoptile tissue.Per-2, carried on the short arms of group 2 chromosomes, shows some polymorphism and is most active in root tissue.Per-3, on the long arms of group 3 chromosomes, is highly variable and most active in embryo tissue.Per-4, carried on chromosome arms7AS,4AL, and7DS, is quite variable and most active in endosperm tissue. (The chromosome nomenclature used in this paper is that agreed to by the 7th International Wheat Genetics Symposium, where the previous designations of4A and4B were reversed.) Restriction fragment length polymorphism (RFLP)-based maps of the group 7 chromosomes were used to locatePer-A4 to a distal region of7AS. In addition, a further set of genes was identified as being active in root tissue. In wheat a single locus,Per-D5, was found on chromosome arm2DS.  相似文献   
55.
Summary Differences in levels of resistance toSeptoria tritici blotch were observed in plants with a specific height-reducing gene. When the gene Rht 2 was present either as an isoline or in the progeny, a higher degree of resistance was found. The most susceptible plants were observed in populations carrying the Rht 1 gene. Associations, as determined by phenotypic correlations, were detected betweenSeptoria tritici blotch and tall stature, late heading, and maturity. Plants having short stature, early heading, early maturity, and acceptable levels of resistance were identified in the F2 population whenRht 2 was present. Results of this study indicated that wheat breeders must select the appropriate dwarfing source that may confer resistance and grow large F2 populations, in order to increase the probability of obtaining desired genotypes.  相似文献   
56.
Summary Aneuploid stocks, which included Triticum aestivum/alien, disomic, chromosome addition lines, wheat/alien, ditelosomic, chromosome addition lines, and the available aneuploids of Chinese Spring wheat, were used to locate genes that influence milling energy requirement (ME). Genes that affected ME were found on all seven homoeologous chromosome groups. The addition of complete wheat chromosomes 1B, 1D, 2A, 2D, 5B, 6B, 7B and 7D increased ME. Positive effects were also found in specific chromosome arms: 1BS, 2DS, 5AS, 5BS and 6BL. Wheat chromosome 3B conditioned low ME and the gene(s) responsible was located on the short arm. Other negative effects were attributed to wheat chromosome arms 4BL, 4DL, 5DS and 6DS. Alien chromosome additions that conferred high ME included 2H, 5H, 6H and 7H of barley, Hordeum vulgare and 2R, 2R, 4R, 4RL, 6R, 6RL and 7RL of rye, Secale cereale. Those that conferred a low ME included 1H ch of H. chilense, and 6u and 7u of Aegilops umbellulata, 5R and 5RS of S. cereale and 5R m and 5R mS of S. montanum. Although the control of ME is polygenic, there is a major effect of genes located on the short arms of homoeologous group 5 chromosomes.  相似文献   
57.
The effects of protein phosphorylation and cation depletion on the electron transport rate and fluorescence emission characteristics of photosystem I at two stages of chloroplast development in light-grown wheat leaves are examined. The light-harvesting chlorophyll a/b protein complex associated with photosystem I (LHC I) was absent from the thylakoids at the early stage of development, but that associated with photosystem II (LHC II) was present. Protein phosphorylation produced an increase in the light-limited rate of photosystem I electron transport at the early stage of development when chlorophyll b was preferentially excited, indicating that LHC I is not required for transfer of excitation energy from phosphorylated LHC II to the core complex of photosystem I. However, no enhancement of photosystem I fluorescence at 77 K was observed at this stage of development, demonstrating that a strict relationship between excitation energy density in photosystem I pigment matrices and the long-wavelength fluorescence emission from photosystem I at 77 K does not exist. Depletion of Mg2+ from the thylakoids produced a stimulation of photosystem I electron transport at both stages of development, but a large enhancement of the photosystem I fluorescence emission was observed only in the thylakoids containing LHC I. It is suggested that the enhancement of PS I electron transport by Mg2+-depletion and phosphorylation of LHC II is associated with an enhancement of fluorescence at 77 K from LHC I and not from the core complex of PS I.  相似文献   
58.
辽西半干旱地区春小麦农田水分循环特征的研究   总被引:5,自引:1,他引:4  
一、研究地区的生态条件概述辽西属暖温带半干旱低山丘陵区,自然条件差,干旱少雨,干燥度为1.2左右,年均降水量为480.1mm,可能蒸散量为551.7mm,水分亏缺严重,而且70—75%的雨水降子6—8月份,春季偏少。舂季气温回升快,风速大,土壤水分蒸发损失严重,因此春旱频繁,并经常  相似文献   
59.
小麦幼苗根系镉螯合素   总被引:3,自引:0,他引:3  
从经Cd~(2+)处理的小麦幼苗根系中分离得到一种镉结合复合物(Cd-BC)。通过SephadexG75,DEAE-52柱层析纯化,鉴定了此复合物性质:(1)紫外吸收光谱在255~265 tim间有一个“肩”,A_(250)/A_(280)>1;(2)在Sephadex G75柱层析上的表观分子量约为10kD,但在SDS-聚丙烯酰胺凝胶电泳上呈现的条带紧接着前沿,分子量非常小;(3)氨基酸组分分析,约90%的氨基酸残基为Glu/Gln,Cys和Gly,三者比例约为4:4:1。结果说明小麦幼苗根系Cd-BC是寡聚肽,是植物镉螯合素(Cd-PCs)的聚合体。  相似文献   
60.
It is known that few wheat cultivars maintain their resistance to rust diseases for a long period of time, particularly when crop populations become genetically more uniform. A number of genetically diverse, so far unexploited, sources of rust resistance in the natural as well as mutagenized population of wheat cultivars were identified. Several of these genes were placed in agronomically superior well-adapted backgrounds so that they could be used as pre-breeding stocks for introducing genetic diversity for resistance in a crop population. Some of these stocks when employed as parents in several cross combinations in a breeding programme have generated a number of promising cultivars with diversity for resistance.Many presently grown wheats in India, near-isogenic lines each with Lr14b, Lr14ab, Lr30 and certain international cultivars were identified as possessing diverse sources of adult plant resistance (APR) to leaf rust. Prolonged leaf rust resistance in some of the Indian cultivars was attributed to the likely presence of Lr34 either alone or in combination with other APR components. Tests of allelism carried out in certain cultivars that continue to show adequate levels of field resistance confirm the presence of Lr34, which explains the role that this gene has played in imparting durability for resistance to leaf rust. Also, Lr34 in combination with other APR components increases the levels of resistance, which suggests that combination of certain APR components should be another important strategy for breeding cultivars conferring durable and adequate levels of resistance. A new adult plant leaf rust resistance source that seems to be associated with durability in Arjun has been postulated. Likewise, cultivars possessing Sr2 in combination with certain other specific genes have maintained resistance to stem rust.Further, non-specific resistances that were transferred across widely different genotypes into two of the popular Indian wheats provided easily usable materials to the national breeding programmes for imparting durable resistance to stripe rust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号