首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11734篇
  免费   1227篇
  国内免费   2331篇
  2024年   17篇
  2023年   193篇
  2022年   219篇
  2021年   358篇
  2020年   469篇
  2019年   521篇
  2018年   518篇
  2017年   498篇
  2016年   518篇
  2015年   488篇
  2014年   541篇
  2013年   824篇
  2012年   468篇
  2011年   544篇
  2010年   418篇
  2009年   648篇
  2008年   564篇
  2007年   624篇
  2006年   598篇
  2005年   559篇
  2004年   525篇
  2003年   479篇
  2002年   435篇
  2001年   384篇
  2000年   333篇
  1999年   327篇
  1998年   270篇
  1997年   286篇
  1996年   277篇
  1995年   246篇
  1994年   217篇
  1993年   204篇
  1992年   219篇
  1991年   163篇
  1990年   174篇
  1989年   150篇
  1988年   139篇
  1987年   130篇
  1986年   103篇
  1985年   132篇
  1984年   93篇
  1983年   56篇
  1982年   121篇
  1981年   78篇
  1980年   51篇
  1979年   34篇
  1978年   25篇
  1977年   13篇
  1976年   9篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 296 毫秒
991.
When chlorine is introduced into public drinking water for disinfection, it can react with organic compounds in surface waters to form toxic by-products such as 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX). We investigated the effect of exposure to MX on cytochrome P450 2E1 (CYP2E1)-like activity and total glutathione (GSH) in the liver of the small fish model, medaka (Oryzias latipes). The multi-site carcinogen methylazoxymethanol acetate (MAMAc) was the positive control compound. Both medaka liver microsome preparations and S-9 fractions catalyzed the hydroxylation of p-nitrophenol (PNP), suggesting CYP2E1-like activity in the medaka. Male medaka exposed for 96 h to the CYP2E1 inducers ethanol and acetone under fasted conditions showed significant increases in PNP-hydroxylation activity. Furthermore, total reduced hepatic GSH was reduced in fish fasted for 96 h, indicating that normal feeding is a factor in maintaining xenobiotic defenses. Exposure to MX and MAMAc induced significant increases in hepatic CYP2E1-like activity, however MX exposure did not alter hepatic GSH levels. These data strengthen the role of the medaka as a suitable species for examining cytochrome P450 and GSH detoxification processes and the role these systems play in chemical carcinogenesis.  相似文献   
992.
The chemical compositions of ground water and organic matter in sediments were investigated at a sandy shore of Tokyo Bay, Japan to determine the fate of ground water NO3 . On the basis of Cl distribution in ground water, the beach was classified into freshwater (FR)-, transition (TR)-, and seawater (SW)-zones from the land toward the shoreline. The NO3 and N2O did not behave conservatively with respect to Cl during subsurface mixing of freshwater and seawater, suggesting NO3 consumption and N2O production in the TR-zone. Absence of beach vegetation indicated that NO3 assimilation by higher plants was not as important as NO3 sink. Low NH4 + concentrations in ground water revealed little reduction of NO3 to NH4 +. These facts implied that microbial denitrification and assimilation were the likely sinks for ground water NO3 . The potential activity and number of denitrifiers in water-saturated sediment were highest in the low-chlorinity part of the TR-zone. The location of the highest potential denitrification activity (DN-zone) overlapped with that of the highest NO3 concentration. The C/N ratio and carbon isotope ratio (13C) of organic matter in sediment (< 100 -m) varied from 12.0 to 22.5 and from –22.5 to –25.5, respectively. The 13C value was inversely related to the C/N ratio (r 2 = 0.968, n = 11), which was explained by the mixing of organic matters of terrestrial and marine origins. In the DN-zone, the fine sediments were rich in organic matters with high C/N ratios and low 13C values, implying that dissolved organic matters of terrestrial origin might have been immobilized under slightly saline conditions. A concurrent supply of NO3 and organic matter to the TR-zone by ground water discharge probably generates favorable conditions for denitrifiers. Ground water NO3 discharged to the beach is thus partially denitrified and fixed as microbial biomass before it enters the sea. Further studies are necessary to determine the relative contribution of these processes for NO3 removal.  相似文献   
993.
994.
High intensity static magnetic fields, when applied to the whole body of the anesthetized rat, have previously been reported to decrease skin temperature. The hypothesis of the present study was that in diamagnetic water, molecules in the air play significant roles in the mechanism of skin temperature decrease. We used a horizontal cylindrical superconducting magnet. The magnet produced 8 T at its center. A thermistor probe was inserted in a subcutaneous pocket of the anesthetized rats to measure skin temperature. Animals (n=10) were placed in an open plastic holder in which the ambient air was free to move in any direction (group I). Animals (n=10) were placed in a closed holder in which the air circulation toward the direction of weak magnetic field was restricted (group II). Each holder was connected to a hydrometer to measure humidity around the animal in the holder. The data acquisition phase consisted of a 5 min baseline interval, followed by inserting the animal together with the holder into the center of the magnet bore for a 5 min exposure and a 5 min postexposure period outside the bore. In group I, skin temperature and humidity around the animal significantly decreased during exposure, followed by recovery after exposure. In group II, skin temperature and humidity did not decrease during the measurement. The skin temperature decrease was closely related to the decrease in humidity around the body of the animal in the holder, and the changes were completely blocked by restricting the air circulation in the direction of the bore entrance. Possible mechanisms responsible for the decrease in skin temperature may be associated with magnetically induced movement of water vapor at the skin surface, leading to skin temperature decrease.  相似文献   
995.
AIMS: An internal positive control for Cryptosporidium and Giardia monitoring was evaluated for use in routine water monitoring quality control. The control, known as ColorSeed C&G (BTF Pty Ltd, Sydney, Australia), is a suspension containing exactly 100 Cryptosporidium oocysts and 100 Giardia cysts that have been modified by attachment of Texas Red to the cell wall, allowing them to be differentiated from unmodified oocysts and cysts. The control enables recovery efficiencies to be determined for every water sample analysed. METHODS AND RESULTS: A total of 494 water samples were seeded with ColorSeed C&G and with unlabelled Cryptosporidium and Giardia and then analysed. Additionally, the robustness of the ColorSeed labelling was challenged with various chemical treatments. Recoveries were significantly lower for the ColorSeed Texas Red labelled Cryptosporidium and Giardia than recoveries of unlabelled Cryptosporidium and Giardia. However, the differences in recoveries were small. On average ColorSeed Cryptosporidium recoveries were 3.3% lower than unlabelled Cryptosporidium, and ColorSeed Giardia recoveries were 4% lower than unlabelled Giardia. CONCLUSIONS: ColorSeed C&G is suitable for use as an internal positive control for routine monitoring of both treated and raw water samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The small differences in recoveries are unlikely to limit the usefulness of ColorSeed C&G as an internal positive control. The ColorSeed labelling was found to be robust after different treatments.  相似文献   
996.
Urban  O. 《Photosynthetica》2003,41(1):9-20
The dynamics of the terrestrial ecosystems depend on interactions between a number of biogeochemical cycles (i.e. carbon, nutrient, and hydrological cycles) that may be modified by human actions. Conversely, terrestrial ecosystems are important components of these cycles that create the sources and sinks of important greenhouse gases (e.g. carbon dioxide, methane, nitrous oxide). Especially, carbon is exchanged naturally among these ecosystems and the atmosphere through photosynthesis, respiration, decomposition, and combustion processes. Continuous increase of atmospheric carbon dioxide (CO2) concentration has led to extensive research over the last two decades, during which more then 1 400 scientific papers describing impacts of elevated [CO2] (EC) on photosynthesis have been published. However, the degree of response is very variable, depending on species, growing conditions, mineral nutrition, and duration of CO2 enrichment. In this review, I have summarised the major physiological responses of plants, in particular of trees, to EC including molecular and primary, especially photosynthetic, physiological responses. Likewise, secondary (photosynthate translocation and plant water status) and tertiary whole plant responses including also plant to plant competition are shown.  相似文献   
997.
Germ  M.  Gaberščik  A. 《Photosynthetica》2003,41(1):91-96
Both amphibious species, Myosotis scorpioides and Ranunculus trichophyllus, thrive in a stressful environment (alternated flooding and drying), which is variable regarding water and radiation regimes. Plants from the field and plants grown under controlled water table maintained at 40 cm were analysed for content of chlorophyll (Chl) and UV-B screening compounds, and the efficiencies of PS2 and electron transport systems. We detected no significant differences in contents of Chl and UV-B screening compounds between submerged and aerial leaves. The measurements of respiratory potential and photochemical efficiency revealed the presence of permanent stress in M. sporpioides in the natural environment. Differences in physiological responses of submerged and aerial leaves indicated that the terrestrial environment was more favourable for M. scorpioides than for R. trichophyllus. Characteristics of both species suggested that R. trichophyllus might be a phylogenetically older aquatic plant than M. scorpioides.  相似文献   
998.
Bombelli  A.  Gratani  L. 《Photosynthetica》2003,41(4):619-625
Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, Quercus ilex L. and Phillyrea latifolia L. (typical evergreen sclerophyllous shrubs) and Cistus incanus L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. C. incanus showed the highest annual rate of net photosynthetic rate (P N) and stomatal conductance (g s) decreasing by 67 and 69 %, respectively, in summer. P. latifolia and Q. ilex showed lower annual maximum P N and g s, although P N was less lowered in summer (40 and 37 %, respectively). P. latifolia reached the lowest midday leaf water potential (1) during the drought period (–3.54±0.36 MPa), 11 % lower than in C. incanus and 19 % lower than in Q. ilex. Leaf relative water content (RWC) showed the same trend as 1. C. incanus showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in P. latifolia and Q. ilex; moreover C. incanus showed the lowest recovery of 1 at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, Q. ilex and P. latifolia by their water use strategy seem to be less sensitive to drought stress than C. incanus.  相似文献   
999.
Singh  B.  Singh  G. 《Photosynthetica》2003,41(3):407-414
Biomass, leaf water potential (l), net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), leaf to air temperature difference (T diff), and instantaneous water use efficiency (WUE) were measured in the seedlings of Dalbergia sissoo Roxb. grown under irrigation of 20 (W1), 14 (W2), 10 (W3), and 8 (W4) mm. Treatments were maintained by re-irrigation when water content of the soil reached 7.4% in W1, 5.6% in W2, 4.3% in W3, and 3.2% in W4. Seedlings in a control (W5) were left without irrigation after maintaining the soil field capacity (10.7%). Seedlings of W1 had highest biomass that was one tenth in W5. Biomass allocation was highest in leaf in W2 and in root in W4 and W5 treatments. Difference between predawn leaf water potential (Pd) and midday (mid) increased with soil water stress and with vapour pressure deficit (VPD) in April and May slowing down the recovery in plant leaf water status after transpiration loss. P N, E, and g s declined and T diff increased from W1 to W5. Their values were highly significant in April and May for the severely stressed seedlings of W4 and W5. P N increased from 08:00 to 10:00 and E increased until 13:00 within the day for most of the seedlings whereas g s decreased throughout the day from 08:00 to 17:00. P N and E were highest in March but their values were low in January, February, April, and May. Large variations in physiological variables to air temperature, photosynthetically active radiation, and vapour pressure deficit (VPD) indicated greater sensitivity of the species to environmental factors. WUE increased from W1 to W2 but decreased drastically at high water stress particularly during hot summer showing a kind of adaptation in D. sissoo to water stress. However, low biomass and reduced physiological functions at <50% of soil field capacity suggest that this species does not produce significant biomass at severe soil water stress or drought of a prolonged period.  相似文献   
1000.
As part of investigations on potential linkages between irrigation and malaria transmission, all surface water bodies in and around three villages along an irrigation distributary in South Punjab, Pakistan, were surveyed for anopheline mosquito larvae (Diptera: Culicidae) from April 1999 to March 2000. Samples were characterized according to exposure to sunlight, substratum, presence of vegetation, fauna, inorganic matter and physical water condition (clear/turbid/foul). Also water temperature, dissolved oxygen (DO), electroconductivity (EC) and pH of sites were recorded. A total of 37982 Anopheles larvae of six morphological types were collected from 2992 samples taken from irrigation/agricultural and village/domestic aquatic habitats. Anopheles subpictus Grassi sensu lato was by far the most abundant (74.3%), followed by An. culicifacies Giles s.l. (4.1%), An. stephensi Liston s.l. (2.6%), An. pulcherrimus Theobald (1.8%), An. peditaeniatus Leicester (0.3%) and An. nigerrimus Giles (0.1%). The four most abundant species were significantly associated with waterlogged fields and communal village drinking-water tanks. Habitat characteristics most correlated with occurrence of anophelines were the physical water condition and the absence/presence of fauna, particularly predators. Occurrence and abundance of Anopheles immatures were not significantly correlated with water temperature, DO, EC or pH. Malaria vectors of the Anopheles culicifacies complex occurred at relatively low densities, mainly in irrigated and waterlogged fields. In South Punjab, where rainfall is very low, it should be possible to reduce anopheline breeding through water management, as larvae develop mainly in water bodies that are directly or indirectly related to the extensive canal-irrigation system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号