首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5878篇
  免费   434篇
  国内免费   225篇
  2024年   12篇
  2023年   94篇
  2022年   76篇
  2021年   181篇
  2020年   201篇
  2019年   322篇
  2018年   259篇
  2017年   176篇
  2016年   153篇
  2015年   175篇
  2014年   381篇
  2013年   428篇
  2012年   246篇
  2011年   350篇
  2010年   241篇
  2009年   220篇
  2008年   241篇
  2007年   282篇
  2006年   233篇
  2005年   183篇
  2004年   168篇
  2003年   144篇
  2002年   129篇
  2001年   101篇
  2000年   98篇
  1999年   108篇
  1998年   85篇
  1997年   93篇
  1996年   96篇
  1995年   66篇
  1994年   63篇
  1993年   50篇
  1992年   72篇
  1991年   71篇
  1990年   53篇
  1989年   63篇
  1988年   55篇
  1987年   50篇
  1986年   59篇
  1985年   61篇
  1984年   73篇
  1983年   51篇
  1982年   71篇
  1981年   40篇
  1980年   48篇
  1979年   36篇
  1978年   16篇
  1977年   12篇
  1976年   16篇
  1972年   10篇
排序方式: 共有6537条查询结果,搜索用时 281 毫秒
91.
Abstract: K252a, an inhibitor of trk phosphorylation and nerve growth factor signal transduction in PC12 cells, blocked nerve growth factor-induced responses in cultured adult rat dorsal root ganglion sensory neurones. The nerve growth factor-dependent appearance of capsaicin sensitivity and accumulation of the neuropeptide substance P were inhibited when dorsal root ganglion neurones were grown in the presence of low concentrations (100 n M ) of K252a. At higher concentrations (3 µ M ), however, K252a stimulated the development of capsaicin sensitivity and the accumulation of substance P even in the absence of nerve growth factor. By using a wide dose range, therefore, we showed that K252a could either inhibit or mimic nerve growth factor's actions on sensory neurones. These results may explain the apparent paradox in the literature that some groups show a blocking effect of K252a on nerve growth factor-dependent survival of dorsal root ganglion sensory neurones, whereas others report that K252a can substitute for nerve growth factor or other trophic factors and promote neuronal survival.  相似文献   
92.
Abstract: The effect of hypoxia on Na+,K+-ATPase and Na+-K+-Cl? cotransport activity in cultured rat brain capillary endothelial cells (RBECs) was investigated by measuring 86Rb+ uptake as a tracer for K+. RBECs expressed both Na+,K+-ATPase and Na+-K+-Cl? cotransport activity (4.6 and 5.5 nmol/mg of protein/min, respectively). Hypoxia (24 h) decreased cellular ATP content by 43.5% and reduced Na+,K+-ATPase activity by 38.9%, whereas it significantly increased Na+-K+-Cl? cotransport activity by 49.1% in RBECs. To clarify further the mechanism responsible for these observations, the effect of oligomycin-induced ATP depletion on these ion transport systems was examined. Exposure of RBECs to oligomycin led to a time-dependent decrease of cellular ATP content (by ~65%) along with a complete inhibition of Na+,K+-ATPase and a coordinated increase of Na+-K+-Cl? cotransport activity (up to 100% above control values). Oligomycin augmentation of Na+-K+-Cl? cotransport activity was not observed in the presence of 2-deoxy-d -glucose (a competitive inhibitor of glucose transport and glycolysis) or in the absence of glucose. These results strongly suggest that under hypoxic conditions when Na+,K+-ATPase activity is reduced, RBECs have the ability to increase K+ uptake through Na+-K+-Cl? cotransport.  相似文献   
93.
Structural and serological studies were performed with the lipopolysaccharide (LPS) expressed by Escherichia coli K12 strains No. 30 and No. 64, into which cosmid clones derived from Vibrio cholerae O1 NIH 41 (Ogawa) and NIH 35A3 (Inaba) had been introduced, respectively. The two recombinant strains, No. 30 (Ogawa) and No. 64 (Inaba), produced LPS that included, in common, the O-polysaccharide chain composed of an α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine (4-amino-4,6-dideoxy-D -manno-pyranose) homopolymer attached to the core oligosaccharide of the LPS of E. coli K12. Structural analysis revealed the presence of N-(3-deoxy-L -glycero-tetronyl)-2-O-methyl-D -perosamine at the non-reducing terminus of the O-polysaccharide chain of LPS from No. 30 (Ogawa) but not from No. 64 (Inaba). Serological analysis revealed that No. 30 (Ogawa) and No. 64 (Inaba) LPS were found to share the group antigen factor A of V. cholerae O1. They were distinguished by presence of the Ogawa antigen factor B [co-existing with relatively small amounts of the Inaba antigen factor (c)] in the former LPS and the Inaba antigen factor C in the latter LPS. It appears, therefore, that No. 30 (Ogawa) and No. 64 (Inaba) have O-antigenic structures that are fully consistent with the AB(c) structure for the Ogawa and the AC structure for the Inaba O-forms of V. cholerae O1, respectively. Thus, the present study clearly confirmed our previous finding that the Ogawa antigenic factor B is substantially related to the 2-O-methyl group at the non-reducing terminus of the α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine homopolymer that forms the O-polysaccharide chain of LPS of V. cholerae O1 (Ogawa).  相似文献   
94.
Adenovirus type 35 (Ad35) is an important pathogen in immunosuppressed individuals such as AIDS patients and bone marrow transplant recipients. Ad35, a member of Ad subgroup B, differs with respect to pathogenic properties from the more fully characterized subgroup C Ad, such as Ad2 and Ad5. One region of human Ad which varies between subgroups and which may influence Ad pathogenesis is early region 3 (E3), a region which appears to modulate the immune response to Ad infection. In order to begin to characterize the differences between the Ad35 E3 and the E3 of other Ad, the complete DNA sequence of the Ad35 E3 promoter and coding sequence along with two flanking structural proteins, pVIII and fiber, has been determined. Ad35 contains open reading frames which are unique to the subgroup B Ad in addition to the four characterized immunoregulatory proteins encoded by the subgroup C Ad. Further evaluation of the sequence of one of these proteins, 18.5K, which is the class-I major histocompatibility complex (MHC) binding protein of 18.5 kDa, demonstrates that the amino acid sequence of this Ad2 gp19K homologue fits a proposed model of gp19K-MHC interaction. Analysis of promoter sequences demonstrates that an NF-κB site found in the subgroup C E3 promoter is absent from the Ad35 E3 promoter. In addition, the fiber genes of Ad35 and other subgroup B Ad have been shown to diverge in an unexpected way, yielding three clusters of fiber homology.  相似文献   
95.
96.
High-conductance calcium-activated potassium (maxi-K) channels comprise a specialized family of K+ channels. They are unique in their dual requirement for depolarization and Ca2+ binding for transition to the open, or conducting, state. Ion conduction through maxi-K channels is blocked by a family of venom-derived peptides, such as charybdotoxin and iberiotoxin. These peptides have been used to study function and structure of maxi-K channels, to identify novel channel modulators, and to follow the purification of functional maxi-K channels from smooth muscle. The channel consists of two dissimilar subunits, and . The subunit is a member of theslo Ca2+-activated K+ channel gene family and forms the ion conduction pore. The subunit is a structurally unique, membrane-spanning protein that contributes to channel gating and pharmacology. Potent, selective maxi-K channel effectors (both agonists and blockers) of low molecular weight have been identified from natural product sources. These agents, together with peptidyl inhibitors and site-directed antibodies raised against and subunit sequences, can be used to anatomically map maxi-K channel expression, and to study the physiologic role of maxi-K channels in various tissues. One goal of such investigations is to determine whether maxi-K channels represent novel therapeutic targets.  相似文献   
97.
Electrochemical data obtained with TMPD+-sensitive electrodes indicate that ammonium-uncoupled chloroplasts retain TMPD (N,N,N',N'-tetramethyl- p -phenylenediamine) mainly in the reduced form during illumination, whereas uncoupled DCMU-treated chloroplasts accumulate TMPD in the oxidized form (TMPD+). This observation indicates that the reduced plastoquinol is the preferred electron donor for photosystem I (PSI) and TMPD can only compete efficiently when plastoquinone reduction is blocked. After adding DCMU the formation of a transmembrane gradient for TMPD+ is reflected by a slow-down of the electrogenic electron transport and by the emerging of the overshoot of the membrane current in the light-off response. A light-dependent increase in photoelectric current generated by chloroplasts in the presence of NH4Cl and TMPD is observed and considered to be caused by a reversible release of current limitation in the interfacial conductance barriers in the lumen.  相似文献   
98.
10-8mol/L的DON毒素加入小麦根质膜制剂中可促进K+刺激的ATP酶活力,10-6mol/L开始呈抑制效应,抑制程度随DON浓度加大而提高。根尖(5cm)离体根段于0.5mmol/L的KCl中,10-8mol/L的DON能促进根段K+吸收,10-6mol/L以上浓度则K+吸收呈抑制,10-2mol/L浓度下根段的净吸收为负值,表明组织中K+大量外渗。根段置蒸馏水中6h,4mmol/L的DON即导致振段K+渗漏。用DON处理整株小麦根,浓度在0.25mmol/L以上可促进K+从植株其它部位向根运输,而浓度在8mmol/L时即抑制K+向根富集,且根内K+明显渗漏。  相似文献   
99.
Summary 1. We examined the actions of mercury (Hg2+) and zinc (Zn2+) on voltage-activated calcium channel currents of cultured rat dorsal root ganglion (DRG) neurons, using the whole-cell patch clamp technique.2. Micromolar concentrations of both cations reduced voltage-activated calcium channel currents. Calcium channel currents elicited by voltage jumps from a holding potential of –80 to 0 mV (mainly L- and N-currents) were reduced by Hg2+ and Zn2+. The threshold concentration for Hg2+ effects was 0.1 µM and that for Zn2+ was 10µM. Voltage-activated calcium channel currents were abolished (>80%) with 5µM Hg2+ or 200µM Zn2+. The peak calcium current was reduced to 50% (IC50) by 1.1µM Hg2+ or 69µM Zn2+. While Zn2+ was much more effective in reducing the T-type calcium channel current—activated by jumping from –80 to –35 mV—Hg2+ showed some increased effectiveness in reducing this current.3. The effects of both cations occurred rapidly and a steady state was reached within 1–3 min. While the action of Zn2+ was not dependent on an open channel state, Hg2+ effects depended partially on channel activation.4. While both metal cations reduced the calcium channel currents over the whole voltage range, some charge screening effects were detected with Hg2+ and with higher concentrations (>100µM) of Zn2+.5. As Zn2+ in the concentration range used had no influence on resting membrane currents, Hg2+ caused a clear inward current at concentrations µM.6. In the present study we discuss whether the actions of both metals on voltage-activated calcium channel currents are mediated through the same binding site and how they may be related to their neurotoxic effects.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号