首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1539篇
  免费   125篇
  国内免费   87篇
  2024年   3篇
  2023年   52篇
  2022年   40篇
  2021年   96篇
  2020年   79篇
  2019年   69篇
  2018年   73篇
  2017年   44篇
  2016年   54篇
  2015年   78篇
  2014年   81篇
  2013年   121篇
  2012年   76篇
  2011年   74篇
  2010年   67篇
  2009年   54篇
  2008年   58篇
  2007年   85篇
  2006年   61篇
  2005年   77篇
  2004年   42篇
  2003年   44篇
  2002年   40篇
  2001年   31篇
  2000年   36篇
  1999年   18篇
  1998年   12篇
  1997年   17篇
  1996年   16篇
  1995年   12篇
  1994年   8篇
  1993年   17篇
  1992年   18篇
  1991年   8篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   7篇
  1983年   7篇
  1982年   13篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1973年   3篇
排序方式: 共有1751条查询结果,搜索用时 125 毫秒
61.
Because broad genetic diversity has recently been detected in Torque teno sus viruses (TTSuV1 and TTSuVk2), the viral genome detection method needs to be improved to understand the prevalence of these viruses. Here, we established single PCR-based detection methods for the TTSuV1 and TTSuVk2a genomes with newly designed primer pairs and applied them to investigate the prevalence of TTSuV1 and TTSuVk2a in Japanese pig populations. The results revealed that 98.2% and 81.7% of the pig farms tested positive for the TTSuV1 and TTSuVk2a genomes, respectively, indicating that both TTSuV1 and TTSuVk2a are widespread in Japan.  相似文献   
62.
Hepatitis C is a liver disease caused by the hepatitis C virus (HCV). The treatment of HCV infection has become more complicated due to various genotypes and subtypes of HCV. The treatment of HCV has made significant advances with direct-acting antivirals. However, for the choice of medicine or the combination of drugs for hepatitis C, it is imperative to detect and discriminate the crucial HCV genotypes. The main objective of this study was to determine the pattern of circulating HCV genotypes in southern Iran, from 2016 until 2019. The other aim of the study was to determine possible associations of patients’ risk factors with HCV genotypes. A total of 803 serum samples were collected in 4 years (2016–2019) from patients with HCV antibody positive results. A total of 728 serum samples were HCV-RNA positive. The prevalence of HCV genotypes was detected using the genotype-specific RT-PCR test for serum samples obtained from 615 patients. The HCV genotype 1 (G1) was the most prevalent (48.8%) genotype in the area, with G1a, G1b, and mixed G1a/b representing 38.4%, 10.1%, and 0.3%, respectively. Genotype 3a was the next most prevalent (47.2%). Mixed genotypes 1a/3a were detected in 22 (3.6%) and finally G4 was found in 3 (0.5%) patients. The other HCV genotypes were not detected in any patient. Genotype 1 (1a and 1b alone, 1a/1b and 1a/3a coinfections) is the most prevalent HCV genotype in southern Iran. HCV G1 shows a significantly higher rate in people under 40 years old.  相似文献   
63.
A continuous viral inactivation (CVI) chamber has been designed to operate with acceptable residence time distribution (RTD) characteristics. However, altering the CVI's geometry and operation to accommodate the scale was not obvious. In this work, we elucidate the influence of Dean vortices and leverage the transition into the weak turbulent regime to establish relationships between input variables and process outputs. This study was targeted to understand and quantify the impact of viscosity, Dean number, internal diameter, and path length on the RTD. When the Dean number exceeds 70, radial mixing generated by the Dean vortices began to consistently alter the axial dispersive effects experienced by the pulse injection. Increasing to a Dean number of >100, the axial dispersive effects were dominated by the Dean vortices which allowed the calculation of the minimum and maximum residence time to be generated. This work provides a method to calculate operational solutions for a tubular incubation reactor in terms of path length, internal diameter, flow rate, and target minimum and maximum residence time specifications that assures both viral residence times while also establishing criteria to maximize product quality during continuous operation.  相似文献   
64.
65.
M蛋白是新城疫病毒(Newcastle disease virus,NDV)基因组编码的一种非糖基化膜相关蛋白,主要位于病毒囊膜内表面,构成病毒囊膜与核衣壳连接的支架。研究表明,M蛋白是一种细胞核-细胞质穿梭蛋白,在抑制细胞基因转录和蛋白质合成以及协助病毒粒子组装和出芽方面发挥了重要作用。目前,国内外对NDV毒力和复制的关系研究主要集中在病毒的F、HN和V蛋白以及RNP复合体,但是近年来研究人员利用反向遗传操作技术研究发现M蛋白与NDV毒力和复制也存在一定的联系。因此,本文主要对NDV M蛋白的结构特征、M蛋白对NDV毒力和复制的影响及其作用机制进行综述,以期为NDV M蛋白的功能研究提供新的理论参考。  相似文献   
66.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号