首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   63篇
  国内免费   3篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   13篇
  2019年   16篇
  2018年   10篇
  2017年   18篇
  2016年   21篇
  2015年   23篇
  2014年   14篇
  2013年   34篇
  2012年   27篇
  2011年   30篇
  2010年   32篇
  2009年   36篇
  2008年   28篇
  2007年   17篇
  2006年   26篇
  2005年   20篇
  2004年   25篇
  2003年   17篇
  2002年   15篇
  2001年   15篇
  2000年   18篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有510条查询结果,搜索用时 421 毫秒
111.
New Zealand has long been a conundrum to biogeographers, possessing as it does geophysical and biotic features characteristic of both an island and a continent. This schism is reflected in provocative debate among dispersalist, vicariance biogeographic and panbiogeographic schools. A strong history in biogeography has spawned many hypotheses, which have begun to be addressed by a flood of molecular analyses. The time is now ripe to synthesize these findings on a background of geological and ecological knowledge. It has become increasingly apparent that most of the biota of New Zealand has links with other southern lands (particularly Australia) that are much more recent than the breakup of Gondwana. A compilation of molecular phylogenetic analyses of ca 100 plant and animal groups reveals that only 10% of these are even plausibly of archaic origin dating to the vicariant splitting of Zealandia from Gondwana. Effects of lineage extinction and lack of good calibrations in many cases strongly suggest that the actual proportion is even lower, in keeping with extensive Oligocene inundation of Zealandia. A wide compilation of papers covering phylogeographic structuring of terrestrial, freshwater and marine species shows some patterns emerging. These include: east–west splits across the Southern Alps, east–west splits across North Island, north–south splits across South Island, star phylogenies of southern mountain isolates, spread from northern, central and southern areas of high endemism, and recent recolonization (postvolcanic and anthropogenic). Excepting the last of these, most of these patterns seem to date to late Pliocene, coinciding with the rapid uplift of the Southern Alps. The diversity of New Zealand geological processes (sinking, uplift, tilting, sea level change, erosion, volcanism, glaciation) has produced numerous patterns, making generalizations difficult. Many species maintain pre‐Pleistocene lineages, with phylogeographic structuring more similar to the Mediterranean region than northern Europe. This structure reflects the fact that glaciation was far from ubiquitous, despite the topography. Intriguingly, then, origins of the flora and fauna are island‐like, whereas phylogeographic structure often reflects continental geological processes.  相似文献   
112.
The dating of recent events in the history of organisms needs divergence rates based on molecular fingerprint markers. Here, we used amplified fragment length polymorphisms (AFLPs) of three distantly related alpine plant species co-occurring in the Spanish Sierra Nevada, the Pyrenees and the southwestern Alps/Massif Central to establish divergence rates. Within each of these species ( Gentiana alpina , Kernera saxatilis and Silene rupestris ), we found that the degree of AFLP divergence ( D N72) between mountain phylogroups was significantly correlated with their time of divergence (as inferred from palaeoclimatic/palynological data), indicating constant AFLP divergence rates. As these rates did not differ significantly among species, a regression analysis based on the pooled data was utilized to generate a general AFLP rate. The application of this latter rate to AFLP data from other herbaceous plant species ( Minuartia biflora : Schönswetter et al . 2006 ; Nigella degenii : Comes et al . 2008 ) resulted in a plausible timing of the recolonization of the Svalbard Islands and the separation of populations from the Alps and Scandinavia ( Minuartia ), and of island population separation in the Aegean Archipelago ( Nigella ). Furthermore, the AFLP mutation rate obtained in our study is of the same magnitude as AFLP mutation rates published previously. The temporal limits of our AFLP rate, which is based on intraspecific vicariance events at shallow (i.e. late glacial/Early Holocene) time scales, remains to be tested.  相似文献   
113.
1. The causes of distribution patterns of stygobionts (obligate subterranean-dwelling aquatic species) were examined with special emphasis on vicariance and dispersal.
2. Dispersal was investigated on the premise that if migration is important, then migration at small scales should predict patterns at larger scales. Data on the copepod fauna of epikarst in Slovenia were especially useful for the study of migration, because data on habitat occupancy could be collected at scales of individual drips located metres apart to the scale of individual caves to entire karst regions. Occupancy of drips in one cave was a remarkably good predictor of occupancy of caves in a region, although not of the overall range of a given species. These results were also supported by occupancy patterns of the general stygobiotic fauna of West Virginia caves, compared at different scales.
3. Vicariance was investigated by noting that proximity to marine embayments increases the likelihood of vicariant speciation. In the U.S.A., only the fauna of the Edwards Aquifer of Texas has a significant component of marine-derived species. Differences in shape of the relationship between species number and number of caves in a county indicated that the marine-derived component represented an addition to rather than a replacement of the other stygobiotic species.
4. Thus, we found evidence for the importance of both vicariance and dispersal. The techniques employed could be used to study these patterns more generally, as more data become available.  相似文献   
114.
Mitochondrial DNA sequence data were used to examine the phylogeographic history of Steller's sea lions (Eumetopias jubatus) in relation to the presence of Plio-Pleistocene insular refugia. Cytochrome b and control region sequences from 336 Steller's sea lions reveal phylogenetic lineages associated with continental refugia south of the ice sheets in North America and Eurasia. Phylogenetic analysis suggests the genetic structure of E. jubatus is the result of Pleistocene glacial geology, which caused the elimination and subsequent reappearance of suitable rookery habitat during glacial and interglacial periods. The cyclic nature of geological change produced a series of independent population expansions, contractions and isolations that had analogous results on Steller's sea lions and other marine and terrestrial species. Our data show evidence of four glacial refugia in which populations of Steller's sea lions diverged. These events occurred from approximately 60,000 to 180,000 years BP and thus preceded the last glacial maximum.  相似文献   
115.
Aim The evolution of avian speciation patterns across much of Eurasia is under‐explored. Excepting phylogeographic patterns of single species, or speciation involving the Himalayas, there has been no attempt to understand the evolution of avian distributional patterns across the rest of the continent. Within many genera there is a pattern of (presumed) sister species occurring in adjacent areas (western, eastern or southern Eurasia), yet this pattern cannot be explained by existing biogeographic barriers. My aim was to examine the possible role of climate‐driven vicariance events in generating avian distributions. Location Eurasia. Methods I constructed a molecular phylogeny of Phoenicurus redstarts, and assembled phylogenetic data from published studies of seven other Eurasian bird genera. On each phylogeny, I assessed the distributional patterns of species and clades relative to refugial areas in western, eastern and southern Eurasia. I also estimated the timing of lineage divergences via a molecular clock, to determine whether distributional patterns can be explained by well‐defined periods of climate change in Eurasia that are recorded from dated sediments in the Chinese Loess Plateau. Results Species relationships in a well‐supported phylogeny of Phoenicurus show a pattern of distributions consistent with repeated speciation in major refugial areas, where one lineage is isolated in a single area of Eurasia relative to its sister lineage. This same pattern is evident in Eurasian Turdus thrushes, and six additional avian genera distributed across Eurasia. Molecular clock dating indicates that divergences within each genus are the result of multiple rounds of speciation in refugia through time, during major climate‐driven episodes of vicariance. Main conclusions Analyses revealed substantial evidence supporting a repeated, non‐random pattern of speciation within and across eight songbird lineages since the Late Miocene. The pattern of speciation supports a model of isolation in refugia during major episodes of vicariance, specifically periods of either intensified desertification of Central Asia or Eurasian glacial cycles. The densely sampled clades used here preclude inter‐continental dispersal as an alternative explanation for distributions. The signature of climate‐driven vicariance across epochs is, given the absence of extant biogeographic barriers, a suitable hypothesis to explain major lineage divergences in widely distributed Eurasian songbird lineages.  相似文献   
116.
Aim To assess the geological evolution and biogeographical implications of low mountain passes. In particular, we question the common biogeographical belief that major mountain belts form impervious physical barriers to biological dispersal, and that related taxa found on opposites sides of mountains are necessarily a result of vicariant tectonic processes. Location The Southern Alps of New Zealand form a long (500 km) narrow mountain belt at the oblique collisional Pacific–Australian tectonic plate boundary. High mountains were uplifted during the Pliocene (2–5 Ma) and uplift has continued to the present day. Methods We integrate previous work from several disciplines to obtain an overview of inter‐relationships between plate tectonic processes, geomorphology and biogeography along the main mountain barrier in New Zealand, and then extend this approach to other major mountain belts. Results The Southern Alps initially formed a barrier to at least some biological dispersal, including vicariant formation of separate species of freshwater non‐migratory galaxiid fish on either side. However, the high mountain barrier was breached in several places when passive transport of topography occurred, from the low‐erosion rain shadow on the eastern side towards the high‐erosion, high‐rainfall western side. This tectonic transport resulted in the capture of eastern rivers by west‐draining rivers, leaving low passes at the topographic divide. These low‐elevation corridors permitted biological dispersal across the mountains, although continued uplift raises these passes. A new set of passes has formed in the northern part of the mountains where younger faults are cutting across the older mountain topography. These potential dispersal corridors are becoming lower with continued erosion, and more common as the defining structures migrate southwards. Main conclusions Biological dispersal across the Southern Alps may be facilitated by numerous mountain passes, especially via the new passes formed by cross‐cutting faults. More low‐lying corridors existed than is readily apparent now, as old river capture‐related passes have been blocked by ongoing uplift. The dynamic mountain‐building and erosional environment typified by the Southern Alps occurs in all the world’s collisional mountain belts, such as the Andes, Himalayas, European Alps and North American Cordillera. Sister taxa occurring across mountain belts are not necessarily a result of vicariance driven by the rise of the mountains, as numerous passes may have permitted intermittent dispersal. The evolution of low passes may have been more prevalent than is currently appreciated, suggesting that topographically complex mountain ranges might be more effectively viewed as dynamic filters within a probability landscape rather than as static and impervious high‐altitude barriers to all but the rarest of biological dispersal events. In some cases, the biological disjunctions observed across mountains may more directly reflect habitat differentiation driven by orographic mountain development that has limited the probability of trans‐alpine dispersal success.  相似文献   
117.
In a recent paper by M. J. Cavalcanti and V. Gallo, 'Panbiogeographical analysis of distribution patterns in hagfishes (Craniata: Myxinidae)' ( Journal of Biogeography , 2008, 35 , 1258–1268), the authors studied the biogeography of an ancient fish family (Myxinidae) in the hope that the contemporary distributions of the species would reveal their past history and that of the ocean basins where they reside. In order to accomplish this task, there are several criteria that should have been met: (1) the ages of the taxa utilized (species) would have to be old enough to reflect the history of the areas where they are found, (2) the identification of the species as listed in the databases would have to be accurate, (3) the geographical locations indicated on the figures would have to be consistent with the statements in the text, and (4) the significance of the vicariant patterns would have to depend on evidence pertaining to the ages of such patterns. Unfortunately, it appears that none of these conditions has been met. It seems apparent that faith in an antiquated method of analysis led to neglect of the necessary steps in the analysis. This leaves little justification for publication of the paper, except to show that hagfishes are very widely distributed.  相似文献   
118.
The sequences of the mitochondrial cytochrome b gene and restriction site variation in the spacer region of the nuclear ribosomal RNA gene [rDNA-restriction fragment length polymorphism (RFLP)] were analysed to determine the phylogeographic structure of the Japanese dormouse ( Glirulus japonicus ), which is threatened by deforestation and has been designated an endangered species in Japan. The phylogenetic tree of cytochrome b grouped G. japonicus into six geographical populations: north-eastern Honshu (I), central Honshu (II), west-central Honshu/Kii Peninsula (III), western Honshu (IV), Shikoku (V), and westernmost Honshu/Kyushu (VI); the genetic distances among these groups suggest divergence in the Late Tertiary. The lineage of group VI was located at the basal position in the phylogenetic tree, followed by the radiation of the other lineages. An rDNA-RFLP analysis of 15 restriction sites roughly supported such genetic isolation; groups I, II, III, IV, V and VI have five, two, one, one, one and four unique restriction sites, respectively, revealing four geographic groups as cryptic species: I, II, III + IV + V and VI. Our results reveal the ancient divergences of the local population, which has a complicated evolutionary history, and should be useful in developing a framework for the conservation of this species.  相似文献   
119.
Similar patterns of dispersal and gene flow between closely associated organisms may promote local adaptation and coevolutionary processes. We compare the genetic structures of the two species of a plant genus (Roridula gorgonias and R. dentata) and their respective obligately associated hemipteran mutualists (Pameridea roridulae and P. marlothi) using allozymes. In addition, we determine whether genetic structure is related to differences in host choice by Pameridea. Allozyme variation was found to be very structured among plant populations but less so among hemipteran populations. Strong genetic structuring among hemipteran populations was only evident when large distances isolated the plant populations on which they live. Although genetic distances among plant populations were correlated with genetic distances among hemipteran populations, genetic distances of both plants and hemipterans were better correlated with geographic distance. Because Roridula and Pameridea have different scales of gene flow, adaptation at the local population level is unlikely. However, the restricted gene flow of both plants and hemipterans could enable adaptation to occur at a regional level. In choice experiments, the hemipteran (Pameridea) has a strong preference for its carnivorous host plant (Roridula) above unrelated host plants. Pameridea also prefers its host species to its closely related sister species. Specialization at the specific level is likely to reinforce cospeciation processes in this mutualism. However, Pameridea does not exhibit intraspecific preferences toward plants from their natal populations above plants from isolated, non-natal populations.  相似文献   
120.
Monkeys and toads define areas of endemism on Sulawesi   总被引:4,自引:0,他引:4  
Abstract.— Ecological or geological phenomena can impose limits on geographic diversification that cause biogeographical patterns of distantly related but sympatrically occurring taxa to be similar. Concordant patterns of diversity facilitate conservation management because strategic designation of protected areas can capture complementary rather than redundant components of variation. Here we demonstrate that on the biodiverse Indonesian island of Sulawesi, seemingly idiosyncratic distributions of diversity in endemic monkeys (Macaca species) and toads (Bufo celebensis) are actually virtually identical on a fine geographic scale. It appears that range fragmentation has generated seven multi-taxon areas of genetic endemism, each of which should be targeted for conservation. Joint consideration of molecular phylogeography, morphology, and demography helps resolve apparent contradictions in paraphyletic macaque mitochondrial DNA and in undifferentiated toad morphology, and facilitates an understanding of biogeography and conservation genetics of Sulawesi fauna.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号