首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   63篇
  国内免费   3篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   13篇
  2019年   16篇
  2018年   10篇
  2017年   18篇
  2016年   21篇
  2015年   23篇
  2014年   14篇
  2013年   34篇
  2012年   27篇
  2011年   30篇
  2010年   32篇
  2009年   36篇
  2008年   28篇
  2007年   17篇
  2006年   26篇
  2005年   20篇
  2004年   25篇
  2003年   17篇
  2002年   15篇
  2001年   15篇
  2000年   18篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有510条查询结果,搜索用时 171 毫秒
101.
Aim To analyse the biogeographical events responsible for the present distribution of cynolebiasine killifishes (Teleostei: Rivulidae: Cynolebiasini), a diversified and widespread Neotropical group of annual fishes threatened with extinction. Location South America, focusing on the main river basins draining the Brazilian Shield and adjacent zones. Methods Phylogenetic analysis of 214 morphological characters of 102 cynolebiasine species using tnt , in conjunction with dispersal–vicariance analysis (diva ) based on the distribution of cynolebiasine species among 16 areas of endemism. Results The basal cynolebiasine node is hypothesized to be derived from an old vicariance event occurring just after the separation of South America from Africa, when the terrains at the passive margin of the South American plate were isolated from the remaining interior areas. This would have been followed by geodispersal events caused by river‐capturing episodes from the adjacent upland river basins to the coastal region. Optimal ancestral reconstructions suggest that the diversification of the tribe Cynolebiasini in north‐eastern South America was first caused by vicariance events in the Paranã–Urucuia–São Francisco area, followed by dispersal from the São Francisco to the Northeastern Brazil area. The latter dispersal event occurred simultaneously in two different cynolebiasine clades, possibly as a result of a temporary connection of the São Francisco area before the uplift of the Borborema Plateau during the Miocene. The diversity of cynolebiasines inhabiting the Paraguay area is hypothesized to be derived from two processes: an older vicariance event (about 30 Ma) separating Paraguay from southern Amazonian areas (Guaporé–Xingu–Araguaia–Tocantins), and a series of more recent dispersal and vicariance events (about 15–11 Ma) caused by successive marine transgressions, which permitted alternating biotic exchange and isolation in the Paraguay, La Plata, Negro and Patos areas. Main conclusions diva indicates there to have been a series of vicariance events congruent with tectonic episodes in South America, but the present distribution of cynolebiasines has also been shaped by a series of dispersal events. The effects of the combined action of dispersal and vicariance events were more conspicuous in the Eastern Brazil and Paraguay areas, thus generating reticulate biogeographical scenarios.  相似文献   
102.
103.
104.
105.
The phylogenetics and biogeography of Pancratium (Amaryllidaceae) were investigated, with a focus on the Mediterranean and adjacent areas, with the aim of contributing new information towards a better understanding of the evolutionary history of the genus and the taxonomic placement of P. linosae and P. hirtum. To address these questions, we sequenced four plastid DNA markers: the ndhF and rbcL genes, the trnL(UAA)trnF(GAA) intergenic spacer and the trnL(UAA) intron, analysing them using parsimony, likelihood and Bayesian approaches. The results show that the relationships among the majority of the species are resolved; however, the relationships of one of the major clades of the genus are unresolved compared with the others. The phylogenetic and the dispersal–vicariance analyses show that Pancratium appears as a well‐structured group with interesting patterns of speciation. Notably, P. arabicum and P. linosae fall within the P. maritimum complex. In addition, P. hirtum is identical, in terms of plastid DNA sequences, to the P. trianthum accessions. The results provide new insights and help to formulate new working hypotheses for evolutionary biology of the genus. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 12–28.  相似文献   
106.
The monsoon tropics of northern Australia are a globally significant biodiversity hotspot, but its phylogeography is poorly known. A major challenge for this region is to understand the biogeographical processes that have shaped the distribution and diversity of taxa, without detailed knowledge of past climatic and environmental fluctuations. Although molecular data have great potential to address these questions, only a few species have been examined phylogeographically. Here, we use the widely distributed and abundant short-eared rock-wallaby (Petrogale brachyotis; n = 101), together with the sympatric monjon (P. burbidgei; n = 11) and nabarlek (P. concinna; n = 1), to assess historical evolutionary and biogeographical processes in northern Australia. We sequenced ~1000 bp of mitochondrial DNA (control region, ND2) and ~3000 bp of nDNA (BRCA1, ω-globin and two anonymous loci) to investigate phylogeographic structuring and delineate the time-scale of diversification within the region. Our results indicate multiple barriers between the Top End (Northern Territory) and Kimberley (Western Australia), which have caused divergence throughout the Plio-Pleistocene. Eight geographically discrete and genetically distinct lineages within the brachyotis group were identified, five of which are separated by major river valleys (Ord, Victoria, Daly), arid lowlands and discontinuous sandstone ranges. It is likely that these barriers have similarly influenced genetic structure in other monsoonal biota.  相似文献   
107.
We investigated here the demographical history of Tabebuia impetiginosa (Bignoniaceae) to understand the dynamics of the disjunct geographical distribution of South American seasonally dry forests (SDFs), based on coupling an ensemble approach encompassing hindcasting species distribution modelling and statistical phylogeographical analysis. We sampled 17 populations (280 individuals) in central Brazil and analysed the polymorphisms at chloroplast (trnS‐trnG, psbA‐trnH, and ycf6‐trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. Phylogenetic analyses based on median‐joining network showed no haplotype sharing among population but strong evidence of incomplete lineage sorting. Coalescent analyses showed historical constant populations size, negligible gene flow among populations, and an ancient time to most recent common ancestor dated from ~4.7 ± 1.1 Myr BP. Most divergences dated from the Lower Pleistocene, and no signal of important population size reduction was found in coalescent tree and tests of demographical expansion. Demographical scenarios were built based on past geographical range dynamic models, using two a priori biogeographical hypotheses (‘Pleistocene Arc’ and ‘Amazonian SDF expansion’) and on two additional hypotheses suggested by the palaeodistribution modelling built with several algorithms for distribution modelling and palaeoclimatic data. The simulation of these demographical scenarios showed that the pattern of diversity found so far for T. impetiginosa is in consonance with a palaeodistribution expansion during the last glacial maximum (LGM, 21 kyr BP), strongly suggesting that the current disjunct distribution of T. impetiginosa in SDFs may represent a climatic relict of a once more wide distribution.  相似文献   
108.
Aims Our aim was to uncover and describe patterns of historical biogeography of the main river basins in central Mexico, based on a secondary Brooks parsimony analysis (BPA) of goodeine fishes, and to understand the processes that determine them with respect to the molecular clock of the goodeines and the geological events that have taken place in the region since the Miocene. Location The region covered in this study includes central Mexico, mostly the so‐called Mesa Central of Mexico, an area argued to be a transitional zone comprising several major river drainages from their headwaters at high elevations along the Transmexican Volcanic Belt to the coast of the Gulf of Mexico and the Pacific Ocean. Methods Based on a previous phylogenetic hypothesis regarding the Goodeidae, we built a data matrix using additive binary coding. First, we conducted a primary BPA to provide general explanations of the historical biogeography of Central Mexico. As ambiguity was found, a secondary BPA was conducted, and some areas were duplicated in order to explain the reticulated history of the area. Area cladograms were obtained by running a parsimony analysis. Instances of vicariance and non‐vicariance processes were described with reference to the cladogram obtained from secondary BPA. Results The study area was divided into 18 discrete regions. Primary BPA produced nine equally parsimonious cladograms with 129 steps, and a consistency index (CI) of 0.574. A strict consensus cladogram shows low resolution among some areas, but other area relationships are consistent. For secondary BPA, five of the 18 regions were duplicated (LEA, COT, AYU, CUT, PAN); one was triplicated (BAL); and one was quadruplicated (AME), suggesting that the pattern of distribution of species in these areas reflects multiple independent events. These areas correspond with the regions exhibiting the highest levels of diversification and the most complex geological history, and those for which river piracy events or basin connections have been proposed. The secondary BPA produced a single most parsimonious cladogram with 118 steps, and a CI of 0.858. This cladogram shows that none of the duplicated areas are nested together, reinforcing the idea of a reticulated history of the areas and not a single vicariant event. Main conclusions Although our results are preliminary and we cannot establish this as a general pattern, as the BPA is based on a single‐taxon cladogram, resolution obtained in the secondary BPA provides some insights regarding the historical biogeography of this group of fishes in river basins of central Mexico. Secondary BPA indicates that the historical biogeography of central Mexico, as shown by their goodeine freshwater fishes, is complex and is a result of a series of vicariant and non‐vicariant events such as post‐dispersal speciation and post‐speciation dispersal.  相似文献   
109.
The historic processes which have led to the present-day patterns of genetic structure in the marine coastal fauna of the Northeast Atlantic are still poorly understood. While tectonic uplifts and changes in sea level may have caused large-scale vicariance, warmer conditions during glacial maxima may have allowed pockets of diversity to persist to a much wider extent than in the Northwestern Atlantic. The large-scale geographic distribution of deeply divergent lineages of the coastal polychaete tubeworms Pectinaria koreni (two clades) and Owenia fusiformis (three clades) were compared using a fragment of the mitochondrial cytochrome oxidase I gene (mtCOI). All lineages were present along the biogeographic transition zone on the north coast of Brittany (France) and we found evidence pointing towards congruence in the timing of cladogenic events between Pectinaria sp. (P. auricoma/P. belgica and P. koreni) and Owenia sp., suggesting a shared history of vicariant events. More conserved 16SrRNA sequences obtained from four species of Pectinariidae together with mtCOI sequences of P. koreni seem consistent with an initial establishment of pectinariids in the north, and a southward colonization of the Northeast Atlantic. Phylogeographic patterns in O. fusiformis were also consistent with a north/south pattern of lineage splitting and congruent levels of divergence were detected between lineages of both species. We observed signatures of both persistence in small northern glacial refugia, and of northwards range expansion from regions situated closer to the Mediterranean. However, whether the recolonization of the Northeast Atlantic by both species actually reflects separate interglacial periods is unclear with regards to the lack of molecular clock calibration in coastal polychaete species.  相似文献   
110.
The New Zealand wrens (Acanthisittidae) are basal in passerine birds and in New Caledonia, the closest country to New Zealand, Amborella is basal in angiosperms. A review of molecular studies indicates that 29 other locally or regionally endemic clades around the Tasman and Coral Sea basins have cosmopolitan or globally widespread sister groups. Other areas that have local endemics basal to diverse global groups include Borneo, Madagascar/South Africa/Tanzania, southern China–Taiwan–Japan, and different parts of Latin America, especially the Guayana Plateau and western Mexico. Basal clades are widely interpreted as ancestral and their location is generally taken to represent a centre of origin for the group as a whole. In the present study, basal groups are treated simply as small (less speciose) sister groups. The Tasman and western Mexico/Caribbean regions have important biogeographic and tectonic ties with each other and with the central Pacific. Large igneous provinces (Ontong Java, Hikurangi‐Manihiki, and Gorgona Plateaus) formed in the central Pacific in the Cretaceous. Fossil wood is found on the Ontong Java Plateau, and formerly emergent seamounts up to 24 km across occur on Hikurangi Plateau. Many terranes in New Zealand, New Caledonia, New Guinea and western America represent former island arcs (or their products) that formed in the central Pacific and later accreted to the Pacific margins. Long‐term survival of taxa as metapopulations on the ephemeral volcanic islands and atolls of plate margins and fissures may explain the biogeographical connections among the Tasman region, the central Pacific, and the accreted terranes of western America. Branching sequences in cladograms and phylogenetic trees have been interpreted as dispersal events, but instead probably indicate the sequence of differentiation in an already widespread ancestor. Major disjunctions of tens of thousands of kilometres often occur between taxa at consecutive nodes on a tree and dispersal by physical movement is unlikely. The break between the globally basal centres and the rest of the world marks the initial site of differentiation of a widespread ancestor, with subsequent or more or less simultaneous differentiation occurring in other areas. Differentiation of the modern angiosperms, passerines and other groups first took place around the Tasman region, or at least the terranes now accumulated there, and then around other centres, especially Madagascar–South Africa and Mexico–north‐west South America. Angiosperms are now recognized as basal to extant gymnosperms and major tectonic dynamism around the globally basal centres during the Mesozoic, involving terrane accretion, orogeny, and rifting could have been involved with the last important modernization of angiosperms, birds and other groups. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 222–245.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号