首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4879篇
  免费   144篇
  国内免费   199篇
  2024年   6篇
  2023年   31篇
  2022年   26篇
  2021年   51篇
  2020年   59篇
  2019年   66篇
  2018年   80篇
  2017年   62篇
  2016年   69篇
  2015年   70篇
  2014年   106篇
  2013年   167篇
  2012年   78篇
  2011年   126篇
  2010年   83篇
  2009年   153篇
  2008年   155篇
  2007年   185篇
  2006年   164篇
  2005年   176篇
  2004年   152篇
  2003年   163篇
  2002年   172篇
  2001年   126篇
  2000年   120篇
  1999年   132篇
  1998年   134篇
  1997年   136篇
  1996年   141篇
  1995年   132篇
  1994年   117篇
  1993年   158篇
  1992年   134篇
  1991年   150篇
  1990年   131篇
  1989年   133篇
  1988年   117篇
  1987年   110篇
  1986年   116篇
  1985年   118篇
  1984年   120篇
  1983年   71篇
  1982年   113篇
  1981年   95篇
  1980年   71篇
  1979年   49篇
  1978年   24篇
  1977年   28篇
  1976年   26篇
  1975年   9篇
排序方式: 共有5222条查询结果,搜索用时 562 毫秒
141.
A K/Rb isotope dilution method was used to determine the uptake of K from undisturbed subsoils. Rb was applied to the topsoil (0–30 cm) to trace the K taken up from the topsoil by crops. The K/Rb ratio in the crops increases when roots contact the Rb-free subsoil. This change in the K/Rb ratio enables the calculation of the uptake of K from the subsoil. Results of 34 field experiments on loess-parabrown soils in N. Germany showed that the subsoil (>30 cm) supplied, on average, 34% of the total K uptake by spring wheat (range 9–70%). The range between the experimental sites is considered in relation to the contents of K in the top and subsoils (as extracted by 0.025 N CaCl2 solution), the proportion of the total root length in the subsoils, and competition for K between roots in the top and subsoil. In subsoils with similar K contents, uptake from the subsoil decreased significantly from 65 to 21% of total K uptake, as K contents in the topsoils increased from 4 to 8 mg K/100 g. On sites with the same K contents in topsoils (9 mg K/100 g), the subsoil supplied 12 to 61% of total K uptake as the K contents of the subsoil increased from 2 to 27 mg K/100 g. The contribution of uptake of K from the subsoil increased with the development of the crop, from 8% at first node stage to 35% at ear emergence, as the proportion of total root length in the subsoil increased. High root length densities in the topsoil (9 cm/cm3) resulted in competition for K between roots and increased uptake of K from the subsoil.  相似文献   
142.
Z. Rengel 《Plant and Soil》1990,128(2):185-189
Ammonium acetate and BaCl2-triethanolamine were used to desorb Mg2+ from the root Donnan free space (DFS) of 23-d-old ryegrass (Lolium multiflorum Lam. cvs. Gulf and Wilo). Amounts of desorbed Mg2+ increased with the increase in Mg2+ activity of the nutrient solution. Slightly less Mg2+ was desorbed by Ba2+ than by NH4 +. Previously published data on short-term net Mg2+ uptake by intact 23-d-old ryegrass plants of the two cultivars were linearly related to the amount of exchangeable Mg+ desorbed from the root DFS (r2=0.90 and 0.81 for the desorption by NH4 + and Ba2+, respectively). A sward of Mg2+ ions attracted to the negative charges of the cell surface is suggested to represent a part of a pool of Mg2+ available for active transport through the plasmalemma.  相似文献   
143.
Nitrate uptake and leaching were measured during one year in a declined fir forest on the Vosges highlands (eastern France), in order to investigate whether excess nitrification could be responsible for a deleterious acidification of the ecosystem. Nitrate uptake by the vegetation was active mainly from spring to early fall, and then reached about 66 kg N ha-1. No significant leaching loss occurred during the growth period of the vegetation. Significant nitrate leaching occurred in winter (about 17 kg N ha-1). During fall and winter the nitrification rate was of the same magnitude as values reported for other ecosystems, and, thus, was not considered to be abnormaly strong. No abnormal temporal discoupling of nitrate production and nitrate uptake occurred in the ecosystem, and forest decline must therefore have some other cause.  相似文献   
144.
Fertilizers labelled with 32P were used to measure amounts of phosphorus, Ps and PF, taken up by Lolium perenne from available soil P and from P fertilizer respectively, when applied at a rate of 66 mg P·(kg soil–1) in greenhouse experiments. The quantity Ps of phosphorus taken up from soil in the presence of P fertilizer was compared to the quantity Po taken up from soil without P fertilizer. The quantity (Ps–Po) is positive for low Po values, i.e. in soils poor in available phosphorus, but is negative for high Po values indicating that an input of P fertilizer can induce a decrease in the utilization of available soil phosphorus. Moreover, for a given soil, the quantity (Ps–Po) depends on the chemical form of the fertilizer. The standard method of evaluation of P fertilizer efficiency is based on the assumption that Ps=Po, but Ps can differ from Po. This result can explain the contradictory data published from field experiments about the efficiency of the various P fertilizers.  相似文献   
145.
S. Kuo 《Plant and Soil》1990,126(2):177-186
Zinc sorption by soils can greatly affect its availability to plants. This study was conducted to determine the relationship between the Zn sorption capacity and plant Zn accumulation in five sludge-amended soils using Swiss chard (Beta vulgaris L.) as an indicator plant. Zinc sorption as a function of Zn concentration and pH was determined for the soils which received no sludge amendment; also DTPA (diethylenetriaminepentaacetic acid) extractable Zn was determined in all soils. Whereas the responses of DTPA-Zn and plant Zn to pH and the quantities of Zn sorbed were similar, the logarithm of DTPA-Zn accounted for only 82% of the variability in the logarithm of Zn accumulation by the plants. The variability was better explained when pH was included with DTPA-Zn in stepwise multiple regressions. The Zn buffering capacity, defined as the ratio of the change in quantity of Zn sorbed ( Zns) to the change in Zn solution concentration (Zn1) (or Zns/Zn1), and the estimated quantity of Zn sorbed were used as a basis to measure Zn intensity. Zinc intensity, which reflects Zn solution concentration, was the predominant factor controlling Zn accumulation by Swiss chard, judging from the good fit of the values of both parameters to the Michaelis-Menten equation. The maximum Zn accumulation was approximately 9 mmol kg–1.Scientific paper no. 8901-29, Department of Agronomy and Soils, College of Agriculture and Home Economics Research Center. Washington State University, Pullman, WA 99164, USA.Scientific paper no. 8901-29, Department of Agronomy and Soils, College of Agriculture and Home Economics Research Center. Washington State University, Pullman, WA 99164, USA.  相似文献   
146.
Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe(III) compounds by release of phytosiderophores (PS) which mobilize Fe(III) by chelation. In most graminaceous species Fe deficiency increases the rate of PS release from roots by a factor of 10–20, but in some species, for example sorghum, this increase is much less. The chemical nature of PS can differ between species and even cultivars.The various PS are similarly effective as the microbial siderophore Desferal (ferrioxamine B methane sulfonate) in mobilizing Fe(III) from a calcareous soil. Under the same conditions the synthetic chelator DTPA (diaethylenetriamine pentaacetic acid) is ineffective.The rate of Fe(III)PS uptake by roots of graminaceous species increases by a factor of about 5 under Fe deficiency. In contrast, uptake of Fe from both synthetic and microbial Fe(III) chelates is much lower and not affected by the Fe nutritional status of the plants. This indicates that in graminaceous species under Fe deficiency a specific uptake system for FePS is activated. In contrast, the specific uptake system for FePS is absent in dicots. In a given graminaceous species the uptake rates of the various FePS are similar, but vary between species by a factor of upto 3. In sorghum, despite the low rate of PS release, the rate of FePS uptake is particularly high.The results indicate that release of PS and subsequent uptake of FePS are under different genetic control. The high susceptibility of sorghum to Fe deficiency (lime-chlorosis) is most probably caused by low rates of PS release in the early seedling stage. Therefore in sorghum, and presumably other graminaceous species also, an increase in resistance to lime chlorosis could be best achieved by breeding for cultivars with high rates of PS release. In corresponding screening procedures attention should be paid to the effects of iron nutritional status and daytime on PS release as well as on rapid microbial degradation of PS.  相似文献   
147.
Several indexes are used to determine the iron nutritional status of plants, but their effectiveness depends either on the plant growth conditions in natural environments or on the assay conditions. This research was conducted to test different indexes of the iron nutritional status of a hydroponic strawberry culture where treatments mainly differed in the source of the iron applied: Fe-EDTA, Fe-EDDHA and Fe-polyflavonoid. Macro and micronutrient concentrations in the nutrient solutions, leaf and vascular tissues were measured. Fe concentration in the nutrient solution during the course of the experiment was considered in relation to the stability of the different chelates. Both Fe concentration and total Fe content of leaves reflected the effect of the treatments; Fe/Mn ratio was significant as a diagnosis index. Other element ratios as P/Fe and K/Ca are not well related with the iron nutrition symptoms observed. Fe2+ concentration measured in leaves was not directly affected by the different chelate treatments.  相似文献   
148.
The long arm of chromosome 4D of wheat (Triticum aestivum L.) contains a gene (or genes) which influences the ability of wheat plants to discriminate between Na+ and K+. This discrimination most obviously affects transport from the roots to the shoots, in which less Na+ and more K+ accumulate in those plants which contain the long arm of chromosome 4D. Concentrations of Na+ and K+ in the roots, and Cl concentrations in the roots and shoots, are not significantly affected by this trait, but Na+, K+ and Cl contents of the grain are reduced. The trait operates over a wide range of salinities and appears to be constitutive. At the moment it is not possible to determine accurately the effect of this trait on growth or grain yield because the aneuploid lines which are available are much less vigorous and less fertile than their euploid parents.  相似文献   
149.
The loading of amino acids and nitrate into the xylem was investigated by collection and analysis of root-pressure exudate from the cut hypocotyl stumps of seedlings of Ricinus communis L. Glutamine was found to be the dominant amino acid in the exudate and also to be the amino acid which is transferred to the xylem most rapidly and accumulated to the greatest extent. The comparison between uptake and xylem loading showed significant differences in specificity between these two transport reactions, indicating a different set of transport systems. Nitrate is transferred to the xylem at a higher relative rate than any amino acid despite the great nitrate-storage capacity of the root system. Thus the supply of nitrate to Ricinus plants leads to enhanced nitrogen allocation to the shoots.  相似文献   
150.
Nitrogen-starved sunflower plants (Helianthus annuus L. cv. Peredovic) cannot absorb NO 3 or NO 2 upon initial exposure to these anions. Ability of the plants to take up NO 3 and NO 2 at high rates from the beginning was induced by a pretreatment with NO 3 . Nitrite also acted as inducer of the NO 2 -uptake system. The presence of cycloheximide during NO 3 -pretreatment prevented the subsequent uptake of NO 3 and NO 2 , indicating that both uptake systems are synthesized de novo when plants are exposed to NO 3 . Cycloheximide also suppressed nitrate-reductase (EC 1.6.6.1) and nitrite-reductase (EC 1.7.7.1) activities in the roots. The sulfhydryl-group reagent N-ethylmaleimide greatly inhibited the uptake of NO 3 and NO 2 . Likewise, N-ethylmaleimide promoted in vivo the inactivation of nitrate reductase without affecting nitrite-reductase activity. Rates of NO 3 and NO 2 uptake as a function of external anion concentration exhibited saturation kinetics. The calculated Km values for NO 3 and NO 2 uptake were 45 and 23 M, respectively. Rates of NO 3 uptake were four to six times higher than NO 3 -reduction rates in roots. In contrast, NO 2 -uptake rates, found to be very similar to NO 3 -uptake rates, were much lower (about 30 times) than NO 2 -reduction rates. Removal of oxygen from the external solution drastically suppressed NO 3 and NO 2 uptake without affecting their reduction. Uptake and reduction were also differentially affected by pH. The results demonstrate that uptake of NO 3 and NO 2 into sunflower plants is mediated by energy-dependent inducible-transport systems distinguishable from the respective enzymatic reducing systems.Abbreviations CHI cycloheximide - NEM N-ethylmaleimide - NiR nitrite reductase - NR nitrate reductase - pHME p-hydroxymercuribenzoate This research was supported by grant PB86-0232 from the Dirección General de Investigatión Científica y Técnica (Spain). One of us (E.A.) thanks the Consejeria de Educación y Ciencia de la Junta de Andalucia for the tenure of a fellowship. We thank Miss G. Alcalá and Miss C. Santos for their valuable technical and secretarial assistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号