首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   41篇
  国内免费   77篇
  2024年   1篇
  2023年   7篇
  2022年   9篇
  2021年   21篇
  2020年   10篇
  2019年   26篇
  2018年   14篇
  2017年   9篇
  2016年   14篇
  2015年   14篇
  2014年   12篇
  2013年   13篇
  2012年   7篇
  2011年   11篇
  2010年   10篇
  2009年   13篇
  2008年   9篇
  2007年   6篇
  2006年   14篇
  2005年   5篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  2000年   10篇
  1999年   10篇
  1998年   3篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
排序方式: 共有314条查询结果,搜索用时 125 毫秒
31.
Biodiversity loss is a global concern, and maintaining habitat complexity in naturally patchy landscapes can help retain regional diversity. A mosaic of prairie, savanna, and forest historically occurred across central North America but currently is highly fragmented due to human land conversion. It is unclear how each habitat type now contributes to regional diversity. Using legacy data, we resurveyed savanna plant communities originally surveyed in the 1950s to compare change in savannas to that in remnant forests and prairies. Savanna community structure and composition changed substantially over the past 60 years. Tree canopy density nearly doubled and many prairie and savanna specialist species were replaced by forest and non‐native species. All three habitats gained and lost many species since the 1950s, resulting in large changes in community composition from local colonizations and extinctions. Across all three habitats, regional species extinctions matched that of regional colonization resulting in no net change in regional species richness. Synthesis—Despite considerable species turnover within savannas, many species remain within the broader prairie–savanna–forest mosaic. Both regional extinctions and colonizations were high over the past 60 years, and maintaining the presence of all three community types—prairie, savanna and forest—on the landscape is critical to maintaining regional biodiversity.  相似文献   
32.
This study tested three hypotheses regarding how plants respond to the spatial heterogeneity in light availability in the rain forest understory: (1) understory plants occur preferentially in the lighter parts of the understory; (2) under–story palms are more shade tolerant than other understory plants; (3) rain forest plants differ in their ontogenetic response to understory light conditions. The study was carried out in old–growth rain forest in the Yasuní National Park, Amazonian Ecuador. The hypotheses were tested by comparing the distributions of 20 plant species (1454 individuals) over microsites with differing degrees of exposure to canopy gaps to the background distribution of these microsites in the forest. The gap exposure of a given microsite was described by an index based on the number and size of gaps in the canopy to which the site was exposed. Two plant height classes were studied: 0.80–2.49 and 2.50–5 m. The first and third hypotheses were accepted, while the second hypothesis was rejected. The results for the individual species corresponded well with what is known from earlier studies about the ecology of these species or close relatives, suggesting that the patterns observed can be generalized for Neotropical rain forests. Notably, the most abundant species in the study represent several different life history strategies. Thus, abundance in the rain forest understory can be achieved by several different strategies. This suggests that niche differentiation in terms of response to small changes in understory light conditions may be an important factor in the maintenance of the high local plant species richness of tropical rain forests.  相似文献   
33.
We studied physiognomy‐specific (i.e., gaps vs. understory) responses of birds to low harvest (18.7 m3/ha), reduced‐impact logging by comparing 3500 mist net captures in control and cut blocks of an Amazonian terra firme forest in Brazil at 20–42 mo postharvest. Species richness did not differ significantly between control (92 species) and cut (85) forest based on rarefaction to 1200 captures. Fifty‐six percent of all species were shared between control and cut forest, compared to the 64 percent shared between control blocks. Higher captures of nectarivores and frugivores in cut forest likely occurred as a consequence of postharvest resource blooms. Higher captures of some insectivores in cut as compared to control forest were unexpected, attributable to increased wandering or shifts from association with midstory to understory as a consequence of habitat alteration. Logging influenced capture rates for 21 species, either consistently, or via positive interaction with physiognomy or time (13 species higher in cut forest and 8 species higher in control forest). Cut understory sites had lower diversity (H′) and scaled dominance than understory and gap sites in control forest. Temporal changes in captures may have resulted from successional dynamics in cut forest: two guilds and three species increased in abundance. Increases in abundances of guilds and particular species were more prevalent in control than in cut forest, suggesting that logging displaced birds to control forest. In general, the effects of logging were relatively minor; low harvest rates and reduced‐impact methods may help to retain aspects of avian biodiversity in Amazon forest understories.  相似文献   
34.
There are few hypotheses to explain local understory diversity patterns. There is a consensus that climate and soil fertility affect understory density and diversity at large scales, but few studies addressed the mechanisms controlling density and diversity locally. Here, I examine patterns of abundance and diversity of three understory herb groups along gradients of soil nutrients and topography at the mesoscale (64 km2) in a wet tropical forest, and possible factors causing them. Herb richness, diversity, density, and cover were measured in fifty‐nine 250 × 2 m plots systematically distributed over Reserva Ducke, Manaus. Herb groups responded differently to environmental gradients. Whereas density and cover of pteridophytes increased with altitude and slope, Marantaceae density and cover decreased. Density of sedges increased with altitude, but did not vary with slope. Density and cover of Marantaceae and sedges but not pteridophytes increased with the soil cation content. Pteridophyte richness increased with slope whereas Marantaceae richness decreased, richness of both groups increased with cation content. Diversity increased with altitude for Marantaceae and decreased for pteridophytes. Some of these patterns agree with what is expected from herbs, such as the greater abundance of Marantaceae and sedges in flat and low altitude plots, where water availability is higher and probably also light, and the greater richness of Marantaceae and pteridophytes in higher nutrient plots. The unexpected results of higher abundance and richness of pteridophytes in slopes, instead of in bottomlands, suggest that biotic or litter‐mediated controls may be important to set these patterns.  相似文献   
35.
Northern forest ecosystems are exposed to a range of anthropogenic processes including global warming, atmospheric deposition, and changing land‐use. The vegetation of northern forests is composed of species with several functional traits related to these processes, whose effects may be difficult to disentangle. Here, we combined analyses of spatio‐temporal dynamics and functional traits of ground flora species, including morphological characteristics, responses to macro‐ and microclimate, soil conditions, and disturbance. Based on data from the Swedish National Forest Inventory, we compared changes in occurrence of a large number of ground flora species during a 20‐year period (1994–2013) in boreal and temperate Sweden respectively. Our results show that a majority of the common ground flora species have changed their overall frequency. Comparisons of functional traits between increasing and declining species, and of trends in mean trait values of sample plots, indicate that current floristic changes are caused by combined effects of climate warming, nitrogen deposition and changing land‐use. Changes and their relations with plant traits were generally larger in temperate southern Sweden. Nutrient‐demanding species with mesotrophic morphology were favored by ongoing eutrophication due to nitrogen deposition in the temperate zone, while dwarf shrubs with low demands on nitrogen decreased in frequency. An increase of species with less northern and less eastern distribution limits was also restricted to temperate Sweden, and indicates effects of a moister and milder macroclimate. A trend toward dense plantation forests is mirrored by a decrease of light‐demanding species in both vegetation zones, and a decrease of grassland species in the temperate zone. Although denser tree canopies may buffer effects of a warmer climate and of nitrogen deposition to some extent, traits related to these processes were weakly correlated in the group of species with changing frequency. Hence, our results indicate specific effects of these often confounded anthropogenic processes.  相似文献   
36.
Norway maple (Acer platanoidesis) is invasive in a natural stand in suburban Ithaca, NY. To determine the understory pattern and consequences of a Norway maple invasion, I compared density and species richness under Norway maples and sugar maples (Acer saccharum). Mean sapling density was significantly lower (P<0.0027) under Norway maples (3.64/100 m2±1.6 SE) than under sugar maples (19.4/100 m2±4.4 SE). Mean sapling species richness was significantly lower (P<0.0018) under Norway maples (0.7/32 m2±0.18 SE) than under sugar maples (2.6/32 m2±0.48 SE). Likewise, Norway maple regeneration is more frequent under sugar maples than sugar maple regeneration: 57% of sugar maple plots had Norway maple saplings while 0% of Norway maple plots had sugar maple saplings. Two significant plot effects were found for presence–absence: Norway maple saplings grow under Norway maples with a significantly lower frequency (P<0.03) than under sugar maples; sugar maple saplings grow under Norway maples with a significantly lower frequency (P<0.000) than under sugar maples. Across the site, Norway maple saplings were the most abundant (29 saplings for 480 m2). The success of Norway maple regeneration and the reductions in total stem density beneath Norway maples is most likely the result of its strong competitive abilities, notably its high shade tolerance and abundant seed crops.  相似文献   
37.
不同密度柚木人工林林下植被及土壤理化性质的研究   总被引:5,自引:0,他引:5  
研究不同密度柚木人工林对林下植被及土壤理化性质的影响,为柚木人工林营建与可持续经营提供理论依据。以广东揭阳14~16年生不同林分密度(650、900、1 050、1 200和1 450 株·hm-2)柚木人工林为研究对象,通过样方调查植被的种名、株数、高度及盖度等,并采集0~20和20~40 cm土样进行理化性质分析,对林下植被物种多样性指数及其土壤理化性质进行主成分分析评价,来评价不同林分密度下柚木人工林的立地质量。结果表明:随着林分密度增加,柚木人工林林下植被盖度整体表现出降低趋势,草本优势物种由阳生性到中生性,逐渐向阴生性的过渡,林下植被Shannon-Wiener指数、Simpson优势度指数、丰富度指数和均匀度指数表现出先增加后减少的趋势;相同密度下,表层土土壤理化性质优于下层土,随着林分密度增大,土壤理化性质整体呈现出先改善后退化的变化过程,不同林分密度间柚木人工林土壤毛管孔隙度、非毛管孔隙度、速效K、速效P、全P、交换性酸和交换性Al等指标差异性显著(P<0.05);基于林下植被物种多样性和土壤理化性质主成分分析,不同林分密度柚木人工林物种多样性和土壤理化性质综合得分由大到小依次是:1 050 株·hm-2(4.82)、900 株·hm-2(1.58)、650 株·hm-2(-1.30)、1 200 株·hm-2(-1.81)、1 450 株·hm-2(-3.29)。因此,说明适宜的林分密度(1 050 株·hm-2)有利于保持较好的林下植被物种多样性和土壤理化性质,在柚木人工林经营的过程中,可以根据实际情况合理调整林分的密度。  相似文献   
38.
Light is a key resource for plant growth and is of particular importance in forest ecosystems, because of the strong vertical structure leading to successive light interception from canopy to forest floor. Tree species differ in the quantity and heterogeneity of light they transmit. We expect decreases in both the quantity and spatial heterogeneity of light transmittance in mixed stands relative to monocultures, due to complementarity effects and niche filling. We tested the degree to which tree species identity and diversity affected, via differences in tree and shrub cover, the spatiotemporal variation in light availability before, during, and after leaf expansion. Plots with different combinations of three tree species with contrasting light transmittance were selected to obtain a diversity gradient from monocultures to three species mixtures. Light transmittance to the forest floor was measured with hemispherical photography. Increased tree diversity led to increased canopy packing and decreased spatial light heterogeneity at the forest floor in all of the time periods. During leaf expansion, light transmittance did differ between the different tree species and timing of leaf expansion might thus be an important source of variation in light regimes for understory plant species. Although light transmittance at the canopy level after leaf expansion was not measured directly, it most likely differed between tree species and decreased in mixtures due to canopy packing. A complementary shrub layer led, however, to similar light levels at the forest floor in all species combinations in our plots. Synthesis. We find that a complementary shrub layer exploits the higher light availability in particular tree species combinations. Resources at the forest floor are thus ultimately determined by the combined effect of the tree and shrub layer. Mixing species led to less heterogeneity in the amount of light, reducing abiotic niche variability.  相似文献   
39.
We compared various aspects of the seed biology of eight non-pioneer tree species from a tropical seasonal rain forest in Xishuangbanna, SW China, that differ in time of dispersal, size and fresh seed moisture content (MC). Seeds were tested for germination under laboratory conditions after dehydration to different moisture levels and under 3.5, 10 and 30% solar irradiances in neutral-shade houses. For six species, germination was also compared in forest understory (3.5% light) and center of a forest gap (32.5% light). Under continuous dehydration over activated silica gel, 100% of seeds of four species had lost the ability to germinate after 48 h, and those of all species except Castanopsis hystrix (decreased from >90 to 30% germination) had lost the ability to germinate after 120 h. Four species did not differ in final germination percentages at the three irradiances (i.e. uniform germination). However, final germination percentages of Horsfieldia pandurifolia and Litsea pierrei var. szemaois were significantly lower in 30% than in 10 or 3.5% light, and seeds of Antiaris toxicaria and C. hystrix germinated to higher percentages in 30 and 10% than in 3.5% light. Mean time to germination (MTG) of the eight species (forest and shade house data combined) ranged from 5–5 days for Pometia tomentosa to 72–207days for L. pierrei; MTG for four species was ≤21 days. There was no obvious relationship between relative desiccation resistance and either time of dispersal, MTG or uniformity of germination at the three light levels, or between seed size and MC or MTG. However, the relationship between seed MC at maturity (25–60% fresh mass basis) and MC at 50% loss of seed viability (12.4–42.5%) was significant. Seven of the species fit Garwood’s (Ecol Monogr 53:159–181, 1983) rapid-rainy germination syndrome and one, L. pierrei, either her delayed-rainy or intermediate-dry germination syndrome. However, fresh, non-dehydrated seeds of all eight species germinated in ≤30 days at constant 30°C in light.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号