首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   14篇
  国内免费   41篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   10篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   18篇
  2013年   26篇
  2012年   11篇
  2011年   22篇
  2010年   20篇
  2009年   19篇
  2008年   27篇
  2007年   19篇
  2006年   23篇
  2005年   19篇
  2004年   37篇
  2003年   27篇
  2002年   27篇
  2001年   15篇
  2000年   16篇
  1999年   12篇
  1998年   12篇
  1997年   7篇
  1996年   12篇
  1995年   11篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1984年   3篇
  1982年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有446条查询结果,搜索用时 812 毫秒
31.
The origin of nucleic acid template replication is a major unsolved problem in science. A novel stochastic model of nucleic acid chemistry was developed to allow rapid prototyping of chemical experiments designed to discover sufficient conditions for template replication. Experiments using the model brought to attention a robust property of nucleic acid template populations, the tendency for elongation to outcompete replication. Externally imposed denaturation-renaturation cycles did not reverse this tendency. For example, it has been proposed that fast tidal cycling could establish a TCR (tidal chain reaction) analogous to a PCR (polymerase chain reaction) acting on nucleic acid polymers, allowing their self-replication. However, elongating side-reactions that would have been prevented by the polymerase in the PCR still occurred in the simulation of the TCR. The same finding was found with temperature and monomer cycles. We propose that if cycling reactors are to allow template replication, oligonucleotide phenotypes that are capable of favorably altering the flux ratio between replication and elongation, for example, by facilitating sequence-specific cleavage within templates, are necessary; accordingly the minimal replicase ribozyme may have possessed restriction functionality.  相似文献   
32.
33.
Many human proteins contain consecutive amino acid repeats, known as homopolymeric amino acid (HPAA) tracts. Some inherited diseases are caused by proteins in which HPAAs are expanded to an excessive length. To this day, nine polyglutamine-related diseases and nine polyalanine-related diseases have been reported, including Huntington's disease and oculopharyngeal muscular dystrophy. In this study, potential HPAA-HPAA interactions were examined by yeast two-hybrid assays using HPAAs of approximately 30 residues in length. The results indicate that hydrophobic HPAAs interact with themselves and with other hydrophobic HPAAs. Previously, we reported that hydrophobic HPAAs formed large aggregates in COS-7 cells. Here, those HPAAs were shown to have significant interactions with each other, suggesting that hydrophobicity plays an important role in aggregation. Among the observed HPAA-HPAA interactions, the Ala28-Ala29 interaction was notable because polyalanine tracts of these lengths have been established to be pathogenic in several polyalanine-related diseases. By testing several constructs of different lengths, we clarified that polyalanine self-interacts at longer lengths (>23 residues) but not at shorter lengths (six to approximately 23 residues) in a yeast two-hybrid assay and a GST pulldown assay. This self-interaction was found to be SDS sensitive in SDS-PAGE and native-PAGE assays. Moreover, the intracellular localization of these long polyalanine tracts was also observed to be disturbed. Our results suggest that long tracts of polyalanine acquire SDS-sensitive self-association properties, which may be a prerequisite event for their abnormal folding. The misfolding of these tracts is thought to be a common molecular aspect underlying the pathogenesis of polyalanine-related diseases.  相似文献   
34.
We synthesized symmetrical and nonsymmetrical triplet drugs with 1,3,5-trioxazatriquinane skeletons. The isolation of key intermediates, oxazoline dimers, made it possible to effectively produce nonsymmetrical triplets. Among the synthesized triplets, KNT-93, composed of three identical opioid μ receptor agonists, showed dose-dependent antinociception via the μ receptor. The effect was 56-fold more potent than that of morphine, a representative μ agonist. The profound analgesic effect induced by KNT-93 might result from simultaneous occupation of three μ opioid receptors.  相似文献   
35.
Biological RNAs, like their DNA counterparts, contain helical stretches, which have standard Watson-Crick base pairs in the anti conformation. Most functional RNAs also adopt geometries with far greater complexity such as bulges, loops, and multihelical junctions. Occasionally, nucleobases in these regions populate the syn conformation wherein the base resides close to or over the ribose sugar, which leads to a more compact state. The importance of the syn conformation to RNA function is largely unknown. In this study, we analyze 51 RNAs with tertiary structure, including aptamers, riboswitches, ribozymes, and ribosomal RNAs, for number, location, and properties of syn nucleobases. These RNAs represent the set of nonoverlapping, moderate- to high-resolution structures available at present. We find that syn nucleobases are much more common among purines than pyrimidines, and that they favor C2'-endo-like conformations especially among those nucleobases in the intermediate syn conformation. Strikingly, most syn nucleobases participate in tertiary stacking and base-pairing interactions: Inspection of RNA structures revealed that the majority of the syn nucleobases are in regions assigned to function, with many syn nucleobases interacting directly with a ligand or ribozyme active site. These observations suggest that judicious placement of conformationally restricted nucleotides biased into the syn conformation could enhance RNA folding and catalysis. Such changes could also be useful for locking RNAs into functionally competent folds for use in X-ray crystallography and NMR.  相似文献   
36.
37.
In recent developments in chemistry and genetic engineering, the humble researcher dealing with the origin of life finds her(him)self in a grey area of tackling something that even does not yet have a clear definition agreed upon. A series of chemical steps is described to be considered as the life-nonlife transition, if one adheres to the minimalistic definition: life is self-reproduction with variations. The fully artificial RNA system chosen for the exploration corresponds sequence-wise to the reconstructed initial triplet repeats, presumably corresponding to the earliest protein-coding molecules. The demonstrated occurrence of the mismatches (variations) in otherwise complementary syntheses ("self-reproduction"), in this RNA system, opens an experimental and conceptual perspective to explore the origin of life (and its definition), on the apparent edge of the origin.  相似文献   
38.
Coding sequences for a hammerhead ribozyme designed to cleave lexA mRNA in a targeted manner was cloned under phage T7 promoter and expressed in E. coli strain BL-21 (DE3) expressing T7 RNA polymerase under the control of IPTG-inducible lac UV-5 promoter. Ribozyme expression in vivo was demonstrated by RNase protection assay. Also, total RNA extracted from these transformed cells following induction by IPTG, displays site-specific cleavage of labeled lexA RNA in an In vitro reaction. The result demonstrates the active ribozyme in extracts of cell transformed with a recombinant cassette and goes beyond the earlier demonstration of the stability of In vitro synthesized ribozyme in cell extracts. The observed rise in lexA mRNA rules out any role for protease activity or resulting fragments of lexA protein in de-repression of RNA. (Mol Cell Biochem 271: 197–203, 2005)  相似文献   
39.
Large RNAs collapse into compact intermediates in the presence of counterions before folding to the native state. We previously found that collapse of a bacterial group I ribozyme correlates with the formation of helices within the ribozyme core, but occurs at Mg2+ concentrations too low to support stable tertiary structure and catalytic activity. Here, using small-angle X-ray scattering, we show that Mg2+-induced collapse is a cooperative folding transition that can be fit by a two-state model. The Mg2+ dependence of collapse is similar to the Mg2+ dependence of helix assembly measured by partial ribonuclease T1 digestion and of an unfolding transition measured by UV hypochromicity. The correspondence between multiple probes of RNA structure further supports a two-state model. A mutation that disrupts tertiary contacts between the L9 tetraloop and its helical receptor destabilized the compact state by 0.8 kcal/mol, while mutations in the central triplex were less destabilizing. These results show that native tertiary interactions stabilize the compact folding intermediates under conditions in which the RNA backbone remains accessible to solvent.  相似文献   
40.
The functional site of ChlZ, an auxiliary electron donor to P680+, was determined by pulsed ELDOR applied to a radical pair of YD and Chlz+ in oriented PS II membranes from spinach. The radical-radical distance was determined to be 29.5 Å and its direction was 50° from the membrane normal, indicating that a chlorophyll on the D2 protein is responsible for the EPR Chlz+ signal. Spin polarized ESEEM (Electronin Spin Echo Envelop Modulation) of a 3Chl and QA radical pair induced by a laser flash was observed in reaction center D1D2Cytb559 complex, in which QA was functionally reconstituted with DBMIB and reduced chemically. QAESEEM showed a characteristic oscillating time profile due to dipolar coupling with 3Chl. By fitting with the dipolar interaction parameters, the distance between 3Chl and QA was determined to be 25.9 Å, indicating that the accessory chlorophyll on the D1 protein is responsible for the 3Chl signal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号