首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   26篇
  国内免费   3篇
  2023年   2篇
  2022年   1篇
  2020年   7篇
  2019年   10篇
  2018年   12篇
  2017年   9篇
  2016年   3篇
  2015年   9篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   8篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
91.
The hole transporting layer (HTL) plays an important role in realizing efficient and stable perovskite solar cells (PSCs). In spite of intensive research efforts toward the development of HTL materials, low‐cost, dopant‐free hole transporting materials that lead to efficient and stable PSCs remain elusive. Herein, a simple polycyclic heteroaromatic hydrocarbon‐based small molecule, 2,5,9,12‐tetra(tert‐butyl)diacenaphtho[1,2‐b:1′,2′‐d]thiophenen, as an efficient HTL material in PSCs is presented. This molecule is easy to synthesize and inexpensive. It is hydrophobic and exhibits excellent film‐forming properties on perovskites. It has unusually high hole mobility and a desirable highest occupied molecular orbital energy level, making it an ideal HTL material. PSCs fabricated using both the n‐i‐p planar and mesoscopic architectures with this compound as the HTL show efficiencies as high as 15.59% and 18.17%, respectively, with minimal hysteresis and high long term stability under ambient conditions.  相似文献   
92.
Over the past five years, a rapid progress in organometal‐halide perovskite solar cells has greatly influenced emerging solar energy science and technology. In perovksite solar cells, the overlying hole transporting material (HTM) is critical for achieving high power conversion efficiencies (PCEs) and for protecting the air‐sensitive perovskite active layer. This study reports the synthesis and implementation of a new polymeric HTM series based on semiconducting 4,8‐dithien‐2‐yl‐benzo[1,2‐d;4,5‐d′]bistriazole‐alt‐benzo[1,2‐b:4,5‐b′]dithiophenes (pBBTa‐BDTs), yielding high PCEs and environmentally‐stable perovskite cells. These intrinsic (dopant‐free) HTMs achieve a stabilized PCE of 12.3% in simple planar heterojunction cells—the highest value to date for a polymeric intrinsic HTM. This high performance is attributed to efficient hole extraction/collection (the most efficient pBBTa‐BDT is highly ordered and orients π‐face‐down on the perovskite surface) and balanced electron/hole transport. The smooth, conformal polymer coatings suppress aerobic perovskite film degradation, significantly enhancing the solar cell 85 °C/65% RH PCE stability versus typical molecular HTMs.  相似文献   
93.
94.
95.
Summary The cells of the mesenteric caeca in the midgut of certain insects possess a labyrinth of transepithelial cisternae. Their existence can be seen in thin sections of lanthanum-incubated tissue, where the tracer enters not only the intercellular clefts but also membranous cisternae which are inpocketings from, and, in continuity with, both the lateral clefts and basal membrane. These infoldings, which are numerous, run from the basal or lateral surfaces into the perinuclear region of the cells, where they are found, laden with lanthanum, as smooth cisternae or vesicles in the peripheral cytoplasm near the plasma membrane. These can be followed in serial sections and are quite distinct from other sub-surface cisternae of the lateral borders which are studded with ribosomes on the cytoplasmic surface. Near the luminal surface, tracer-laden structures in the form of vesicles and granules become increasingly predominant over those in the form of cisternae. Freeze-fracture replicas confirm the above observations, in that the plasma membrane of the intercellular cleft can be characterized as such unequivocally, since it exhibits smooth septate junctional E face grooves and P face ridges. Lateral infoldings, cisternae and vesicles can be seen arising directly from these junction-bearing membranes. The transepithelial cisternae and vesicles may be the morphological basis of an insect transcellular transport system, comparable to the tubulocisternal endoplasmic reticulum present in the transporting secretory and absorptive epithelia of vertebrate tissues. However, in insect midgut caecal epithelia, the cisternae appear to be, albeit presumably transiently, in direct continuity with the extracellular space, forming a plasma membrane reticular system which seems not to be the case with the tubulo-cisternal endoplasmic reticulum which terminates in subsurface cisternae.  相似文献   
96.
Over the past few years, hybrid halide perovskites have emerged as a highly promising class of materials for photovoltaic technology, and the power conversion efficiency of perovskite solar cells (PSCs) has accelerated at an unprecedented pace, reaching a record value of over 22%. In the context of PSC research, wide‐bandgap semiconducting metal oxides have been extensively studied because of their exceptional performance for injection and extraction of photo‐generated carriers. In this comprehensive review, we focus on the synthesis and applications of metal oxides as electron and hole transporters in efficient PSCs with both mesoporous and planar architectures. Metal oxides and their doped variants with proper energy band alignment with halide perovskites, in the form of nanostructured layers and compact thin films, can not only assist with charge transport but also improve the stability of PSCs under ambient conditions. Strategies for the implementation of metal oxides with tailored compositions and structures, and for the engineering of their interfaces with perovskites will be critical for the future development and commercialization of PSCs.  相似文献   
97.
Perovskite solar cells have emerged as a promising technique for low‐cost, light weight, and highly efficient photovoltaics. However, they still largely rely on 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (Spiro‐OMeTAD) to serve as hole‐transporting materials (HTMs). Here, a series of HTMs with small molecular weight is designed, which are constructed on a spiro core involving phenylpyrazole and a second heteroaromatics, i.e., xanthene (O atom), thioxanthene (S atom), and acridine (N atom). Through varying from phenylpyrazole substituted xanthene ( PPyra‐XA ), thioxanthene ( PPyra‐TXA ), to acridine ( PPyra‐ACD ), their optical and electrochemical properties, hole mobilities, and the photovoltaic performance are optimized. As a consequence, PPyra‐TXA based device exhibits the highest power conversion efficiency (PCE) of 18.06%, outperforming that of Spiro‐OMeTAD (16.15%), which could be attributed to the enhancement of hole mobility exerted by the thioxanthene. In addition, the dopant‐free device shows PCE of 11.7%. These results open a new direction for designing spiro‐HTMs by simple modification of chemical structures.  相似文献   
98.
Transporting living complex cellular constructs through the mail while retaining their full viability and functionality is challenging. During this process, cells often suffer from exposure to suboptimal life‐sustaining conditions (e.g. temperature, pH), as well as damage due to shear stress. We have developed a transport device for shipping intact cell/tissue constructs from one facility to another that overcomes these obstacles. Our transport device maintained three different cell lines (Caco2, A549, and HepG2 C3A) individually on transwell membranes with high viability (above 97%) for 48 h under simulated shipping conditions without an incubator. The device was also tested by actual overnight shipping of blood brain barrier constructs consisting of human induced pluripotent brain microvascular endothelial cells and rat astrocytes on transwell membranes to a remote facility (approximately 1200 miles away). The blood brain barrier constructs arrived with high cell viability and were able to regain full barrier integrity after equilibrating in the incubator for 24 h; this was assessed by the presence of continuous tight junction networks and in vivo‐like values for trans‐endothelial electrical resistance (TEER). These results demonstrated that our cell transport device could be a useful tool for long‐distance transport of membrane‐bound cell cultures and functional tissue constructs. Studies that involve various cell and tissue constructs, such as the “Multi‐Organ‐on‐Chip” devices (where multiple microscale tissue constructs are integrated on a single microfluidic device) and studies that involve microenvironments where multiple tissue interactions are of interest, would benefit from the ability to transport or receive these constructs. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1257–1266, 2017  相似文献   
99.
Organic anion transporting polypeptide 3 (oatp3) transports various CNS-acting endogenous compounds, including thyroid hormones and prostaglandin E2, between extra- and intracellular spaces, suggesting a possible role in CNS function. The purpose of this study was to clarify the expression and localization of oatp3 in the mouse brain. RT-PCR analysis revealed that oatp3 mRNA is expressed in brain capillary-rich fraction, conditionally immortalized brain capillary endothelial cells, choroid plexus, brain and lung, but not in liver or kidney, where oatp1, 2 and 5 mRNAs were detected. Immunohistochemical analysis with anti-oatp3 antibody suggests that oatp3 protein is localized at the brush-border membrane of mouse choroid plexus epithelial cells. Furthermore, intense immunoreactivity was detected in neural cells in the border region between hypothalamus and thalamus, and in the olfactory bulb. Immunoreactivity was also detected in brain capillary endothelial cells in the cerebral cortex. These localizations in the mouse brain suggest that oatp3 plays roles in blood-brain and -cerebrospinal fluid barrier transport of organic anions and signal mediators, and in hormone uptake by neural cells.  相似文献   
100.
Although they have several important limitations primary human hepatocytes still represent the in vitro gold standard model for xenobiotic metabolism and toxicity studies. The large use of human liver cell lines either from tumoral origin or obtained by oncogenic immortalisation is prevented by the loss of various liver-specific functions, especially many cytochrome P450 (CYP)-related enzyme activities. We review here recent results obtained with a new human hepatoma cell line, named HepaRG, derived from a human hepatocellular carcinoma. These cells exhibit unique features: when seeded at low density they acquire an elongated undifferentiated morphology, actively divided and after having reached confluency formed typical hepatocyte-like colonies surrounded by biliary epithelial-like cells. Moreover contrary to other human hepatoma cell lines including HepG2 cells, HepaRG cells express various CYPs (CYP1A2, 2B6, 2C9, 2E1, 3A4) and the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) at levels comparable to those found in cultured primary human hepatocytes. They also express various other functions such phase 2 enzymes, apical and canalicular ABC transporters and basolateral solute carrier transporters, albumin, haptoglobin as well as aldolase B that is a specific marker of adult hepatocytes. HepaRG cells could represent a surrogate to primary human hepatocytes for xenobiotic metabolism and toxicity studies and even more, a unique model system for analysing genotoxic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号