首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   2篇
  国内免费   11篇
  2024年   1篇
  2023年   3篇
  2021年   9篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   9篇
  2011年   7篇
  2010年   8篇
  2009年   9篇
  2008年   14篇
  2007年   13篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
排序方式: 共有160条查询结果,搜索用时 20 毫秒
91.
Transposable elements as tools for genomics and genetics in Drosophila.   总被引:3,自引:0,他引:3  
The P-element has been the workhorse of Drosophila genetics since it was developed as a tool for transgenesis in 1982; the subsequent development of a variety of systems based on the transposon have provided a range of powerful and flexible tools for genetics and genomics applications. P-element insertions are frequently used as starting-points for generating chromosomal deletions to remove flanking genes, either by screening for imprecise excision events or by selecting for male recombination events. Elements that utilise the yeast FLP/FLP recombination target (FRT) site-specific recombination system have been widely used to generate molecularly marked mitotic clones for mosaic analysis, extending the reach of this powerful genetic tool to virtually all areas of developmental biology. P-elements are still widely used as traditional mutagenesis reagents and form the backbone of projects aimed at generating insertions in every predicted gene in the fly genome. In addition, vectors based on the FLP/FRT system are being used for genome-wide applications, including the development of molecularly-mapped deletion and duplication kits. In addition to these 'traditional' genetic approaches, a variety of engineered elements have been developed for a wide range of transgenic applications, including enhancer trapping, gene-tagging, targeted misexpression, RNA interference (RNAi) delivery and homologous recombination/gene replacement. To complement the use of P-elements, alternative transposon vectors have been developed. The most widely used of these are the lepidopteran element piggyBac and a Drosophila hydei transposon, Minos. In total, a range of transposon vectors offers the Drosophila biologist considerable flexibility and sophistication in manipulating the genome of the fly and has allowed rapid advances in all areas of developmental biology and genome science.  相似文献   
92.
To successfully treat cancer we will likely need a much more detailed understanding of the genes and pathways meaningfully altered in individual cancer cases. One method for achieving this goal is to derive cancers in model organisms using unbiased forward genetic screens that allow cancer gene candidate discovery. We have developed a method using a “cut-and-paste” DNA transposon system called Sleeping Beauty (SB) to perform forward genetic screens for cancer genes in mice. Although the approach is conceptually similar to the use of replication competent retroviruses for cancer gene identification, the SB system promises to allow such screens in tissues previously not amenable to forward genetic screens such as the gastrointestinal tract, brain, and liver. This article describes the strains useful for SB-based screens for cancer genes in mice and how they are deployed in an experiment.  相似文献   
93.
郑火青  胡福良  朱威 《昆虫知识》2006,43(5):599-602
转基因动物的科研价值和商业价值促进了转基因技术的不断发展和在各个领域的深入应用。蜜蜂是有着悠久饲养历史的经济昆虫和在基础理论研究领域有重大应用价值的模式动物,但其转基因研究却相对落后。雌性蜂的级型分化和工蜂清洁巢房行为增加了蜜蜂转基因的难度,精子介导转基因配套以人工授精技术及蜜蜂卵或幼虫的转基因操作与蜜蜂人工孵育技术结合是目前蜜蜂转基因的较好途径。文章综述蜜蜂转基因的研究进展,并讨论蜜蜂转基因所面临的特殊性及其研究途径。  相似文献   
94.
Sugar beet (Beta vulgaris) is an important arable crop, traditionally used for sugar extraction, but more recently, for biofuel production. A wide range of pests, including beet cyst nematode (Heterodera schachtii), root‐knot nematodes (Meloidogyne spp.), green peach aphids (Myzus persicae) and beet root maggot (Tetanops myopaeformis), infest the roots or leaves of sugar beet, which leads to yield loss directly or through transmission of beet pathogens such as viruses. Conventional pest control approaches based on chemical application have led to high economic costs. Development of pest‐resistant sugar beet varieties could play an important role towards sustainable crop production while minimising environmental impact. Intensive Beta germplasm screening has been fruitful, and genetic lines resistant to nematodes, aphids and root maggot have been identified and integrated into sugar beet breeding programmes. A small number of genes responding to pest attack have been cloned from sugar beet and wild Beta species. This trend will continue towards a detailed understanding of the molecular mechanism of insect–host plant interactions and host resistance. Molecular biotechnological techniques have shown promise in developing transgenic pest resistance varieties at an accelerated speed with high accuracy. The use of transgenic technology is discussed with regard to biodiversity and food safety.  相似文献   
95.
利用转基因克隆奶山羊乳腺生物反应器大量生产重组人的抗凝血酶III(rhATIII)蛋白质。其中包括: 筛选出人的抗凝血酶Ⅲ蛋白基因的cDNA序列; 利用山羊的b-酪蛋白基因的启动区, 终止信号和Enterokinase蛋白酶酶切DNA序列, 构建在乳腺中特异表达rhATⅢ的表达载体。同时在转基因载体的末端连接一个新酶素筛选基因(Neomycin)。再以细胞转染、G418筛选和体细胞核移植(动物克隆)等过程, 最后获得含有人的抗凝血酶Ⅲ基因的转基因克隆奶山羊。我们共获得了5个原代转基因公羊。第一只克隆羊在出生后78 d死亡, 解剖表明: 羊的肺部和肾脏等器官有异常。其它克隆公羊经过与崂山种母羊交配, 得到转基因后代, 其中两个原代转基因羊的后代母羊已成熟、所获得的奶经蛋白质电泳证明: 转基因克隆羊后代奶中含有约60 kD大小的rhATⅢ糖蛋白; 经Elisa检测表明: 在奶中含有大量活性的rhATⅢ, 在来源于两个不同克隆公羊的后代母羊奶中的rhATⅢ含量分别为0.4 mg/L和3 g/L。此研究证明: 转基因奶山羊可以大量地生产具有很高活性的rhATⅢ。用这种方法生产的rhATⅢ通过蛋白质提纯, 制成注射针剂, 将可用于人的抗凝血酶III缺乏症的治疗、预防血栓和重大手术过程中的止血的作用等。  相似文献   
96.
97.
Interspecies somatic cell nuclear transfer (iSCNT) has emerged as an important tool for studying nucleo-cytoplasmic interactions and cloning of animals whose oocytes are difficult to obtain. This study was designed to explore the feasibility of employing transgenic fibroblasts as donor cells for iSCNT. The study examined the chromatin morphology, in vitro development, and expression of an enhanced green fluorescent protein (EGFP) gene in porcine- and bovine-cloned embryos produced by iSCNT of fetal fibroblast transfected with a pLNbeta-EGFP retroviral vector. Parthenogenetic and transfected or nontransfected intraspecies SCNT embryos were used as controls for comparison. Analysis of data revealed that xenogenic oocyte was able to reprogram somatic cells of different genus and supports their in vitro development to the blastocyst stage. However, the developmental rates of transgenic iSCNT embryos to the blastocyst stage were significantly lower than those of intraspecies SCNT embryos. The reduction in development rates was however, not due to integration of the transgene as the lower (P < 0.05) development rates of the intraspecies SCNT porcine or bovine embryos did not differ between transgenic and nontransgenic groups. Expression of EGFP was observed in 100% of blastocysts and mosaicism was not observed. Furthermore, after iSCNT of porcine or bovine donor nuclei into xenogenic ooplasm, patterns of nuclear remodeling in reconstructed embryos were similar. In conclusion, our data demonstrated the feasibility of producing transgenic iSCNT embryos. To our knowledge, this is the first report of transgenic cloned embryo production by iSCNT approach. In the future, this may provide a powerful research tool for studying developmental events in domestic animals and provide marked cell lines for other genetic manipulations.  相似文献   
98.
The cellular form of the prion protein (PrP(C)) is a plasma membrane-anchored glycoprotein whose physiological function is poorly understood. Here we report the effect of transgene expression of Xenopus PrP(C) fused to the C-terminus of the green fluorescent protein (GFP-PrP(C)) specifically in the neuroendocrine intermediate pituitary melanotrope cells of Xenopus laevis. In the transgenic melanotrope cells, the level of the prohormone proopiomelanocortin (POMC) in the secretory pathway was reduced when the cells were (i) exposed for a relatively long time to the transgene product (by physiologically inducing transgene expression), (ii) metabolically stressed, or (iii) forced to produce unfolded POMC. Intriguingly, although the overall ultrastructure was normal, electron microscopy revealed the induction of lysosomes taking up POMC secretory granules (crinophagy) in the transgenic melanotrope cells, likely causing the reduced POMC levels. Together, our results indicate that in neuroendocrine cells transgene expression of PrP(C) affects the functioning of the secretory pathway and induces crinophagy.  相似文献   
99.
The enhancer trap approach utilizing transposons yields us information about gene functions and gene expression patterns. In the ascidian Ciona intestinalis, transposon-based transgenesis and insertional mutagenesis were achieved with a Tc1/mariner transposon Minos. We report development of a novel technique for enhancer trap in C. intestinalis. This technique uses remobilization of Minos in the Ciona genome. A Minos vector for enhancer trap was constructed and a tandem array insertion of the vector was introduced into the Ciona genome to create a mutator line. Minos was remobilized in Ciona chromosomes to create new insertions by providing transposases. These transposase-introduced animals were crossed with wild-type animals. Nearly 80% of F1 families showed novel GFP expression patterns. This high-throughput enhancer trap screen will be useful to create new marker transgenic lines showing reporter gene expression in specific tissues and to identify novel patterns of gene expression.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号