首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   284篇
  国内免费   13篇
  2024年   1篇
  2023年   7篇
  2022年   11篇
  2021年   21篇
  2020年   47篇
  2019年   82篇
  2018年   75篇
  2017年   80篇
  2016年   77篇
  2015年   89篇
  2014年   80篇
  2013年   71篇
  2012年   60篇
  2011年   72篇
  2010年   53篇
  2009年   45篇
  2008年   46篇
  2007年   37篇
  2006年   25篇
  2005年   29篇
  2004年   18篇
  2003年   17篇
  2002年   9篇
  2001年   13篇
  2000年   13篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1984年   1篇
  1981年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有1106条查询结果,搜索用时 437 毫秒
71.
The expected use of solid biomass for large-scale heat and power production across North–West Europe (NW EU) has led to discussions about its sustainability, especially due to the increasing import dependence of the sector. While individual Member States and companies have put forward sustainability criteria, it remains unclear how different requirements will influence the availability and cost of solid biomass and thus how specific regions will satisfy their demand in a competitive global market. We combined a geospatially explicit least-cost biomass supply model with a linear optimization solver to assess global solid biomass trade streams by 2020 with a particular focus on NW EU. We apply different demand and supply scenarios representing varying policy developments and sustainability requirements. We find that the projected EU solid biomass demand by 2020 can be met across all scenarios, almost exclusively via domestic biomass. The exploitation of domestic agricultural residue and energy crop potentials, however, will need to increase sharply. Given sustainability requirements for solid biomass as for liquid biofuels, extra-EU imports may reach 236 PJ by 2020, i.e., 400% of their 2010 levels. Intra-EU trade is expected to grow with stricter sustainability requirements up to 548 PJ, i.e., 280% of its 2010 levels by 2020. Increasing sustainability requirements can have different effects on trade portfolios across NW EU. Excluding pulpwood pellets may drive the supply costs of import dependent countries, foremost the Netherlands and the UK, whereas excluding additional forest biomass may entail higher costs for Germany and Denmark which rely on regional biomass. Excluding solid biomass fractions may create short-term price hikes. Our modeling results are strongly influenced by parameterization choices, foremost assumed EU biomass supply volumes and costs and assumed relations between criteria and supply. The model framework is suited for the inclusion of dynamic supply–demand interactions and other world regions.  相似文献   
72.
Sexually selected ornaments and signals are costly to maintain if they are maladaptive in nonreproductive contexts. The jumping spider Cosmophasis umbratica exhibits distinct sexual dichromatism with males displaying elaborate UV body markings that signal male quality. Female C. umbratica respond favorably to UV‐reflecting males and ignore males that have their UV masked. However, Portia labiata, a UV‐sensitive spider‐eating specialist and a natural predator of C. umbratica, is known to use UV reflectance as a cue when hunting prey. We investigated the cost of these UV signals in C. umbratica in terms of their predation risk. Under experimental conditions, three choice scenarios were presented to P. labiata individuals. Choices by P. labiata were made between male C. umbratica with and without the UV signal; a UV‐reflecting male and non‐UV‐reflecting female; and a UV‐masked male and female. The presence and absence of UV signals was manipulated using an optical filter. Portia labiata exhibited a strong bias toward UV+ individuals. These results suggest the sexually selected trait of UV reflectance increases the visibility of males to UV‐sensitive predators. The extent of this male‐specific UV signal then is potentially moderated by predation pressure. Interestingly though, P. labiata still preferred males to females irrespective of whether UV reflectance was present or not. This suggests P. labiata can switch cues when conditions to detect UV reflectance are not optimal.  相似文献   
73.
Natural selection alters the distribution of a trait in a population and indirectly alters the distribution of genetically correlated traits. Long‐standing models of thermal adaptation assume that trade‐offs exist between fitness at different temperatures; however, experimental evolution often fails to reveal such trade‐offs. Here, we show that adaptation to benign temperatures in experimental populations of Drosophila melanogaster resulted in correlated responses at the boundaries of the thermal niche. Specifically, adaptation to fluctuating temperatures (16–25°C) decreased tolerance of extreme heat. Surprisingly, flies adapted to a constant temperature of 25°C had greater cold tolerance than did flies adapted to other thermal conditions, including a constant temperature of 16°C. As our populations were never exposed to extreme temperatures during selection, divergence of thermal tolerance likely reflects indirect selection of standing genetic variation via linkage or pleiotropy. We found no relationship between heat and cold tolerances in these populations. Our results show that the thermal niche evolves by direct and indirect selection, in ways that are more complicated than assumed by theoretical models.  相似文献   
74.
Classical optimality models of offspring size and number assume a monotonically increasing relationship between offspring size and performance. In aquatic organisms with complex life cycles, the size–performance function is particularly hard to grasp because measures of performance are varied and their relationships with size may not be consistent throughout early ontogeny. Here, we examine size effects in premetamorphic (larval) and postmetamorphic (juvenile) stages of brooding marine animals and show that they vary contextually in strength and direction during ontogeny and among species. Larger offspring of the sea anemone Urticina felina generally outperformed small siblings at the larval stage (i.e., greater settlement and survival rates under suboptimal conditions). However, results differed when analyses were conducted at the intrabrood versus across‐brood levels, suggesting that the relationship between larval size and performance is mediated by parentage. At the juvenile stage (15 months), small offspring were less susceptible than large ones to predation by subadult nudibranchs and both sizes performed similarly when facing adult nudibranchs. In a sympatric species with a different life history (Aulactinia stella), all juveniles suffered similar predation rates by subadult nudibranchs, but smaller juveniles performed better (lower mortalities) when facing adult nudibranchs. Size differences in premetamorphic performance of U. felina were linked to total lipid contents of larvae, whereas size‐specific predation of juvenile stages followed the general predictions of the optimal foraging strategy. These findings emphasize the challenge in gathering empirical support for a positive monotonic size–performance function in taxa that exhibit complex life cycles, which are dominant in the sea.  相似文献   
75.
Linking adaptive divergence to hybrid unfitness is necessary to understand the ecological factors contributing to reproductive isolation and speciation. To date, this link has been demonstrated in few model systems, most of which encompass ecotypes that occupy relatively early stages in the speciation process. Here we extend these studies by assessing how host‐plant adaptation conditions hybrid fitness in the pea aphid, Acyrthosiphon pisum. We made crosses between and within five pea aphid biotypes adapted to different host plants and representing various stages of divergence within the complex. Performance of F1 hybrids and nonhybrids was assessed on a “universal” host that is favorable to all pea aphid biotypes in laboratory conditions. Although hybrids performed equally well as nonhybrids on the universal host, their performance was much lower than nonhybrids on the natural hosts of their parental populations. Hence, hybrids, rather than being intrinsically deficient, are maladapted to their parents’ hosts. Interestingly, the impact of this maladaptation was stronger in certain hybrids from crosses involving the most divergent biotype, suggesting that host‐dependent postzygotic isolation has continued to evolve late in divergence. Even though host‐independent deficiencies are not excluded, hybrid maladaptation to parental hosts supports the hypothesis of ecological speciation in this complex.  相似文献   
76.
The seedling stage is generally the most important bottleneck for the successful regeneration of trees in forests. The traits of seedlings, particularly biomass allocation and root traits, are more easily quantified than the traits of adults. In this study, we tested the hypothesis that seedling traits vary and trade‐off tracking the changing environment during secondary succession. We measured the major morphological traits of 27 dominant species and the major environmental factors in a chronosequence (30‐yr‐old fallow, 60‐yr‐old fallow, and old growth forest) after shifting cultivation in a tropical lowland rain forest on Hainan Island, China. The 30‐yr‐old fallow had higher light and nutrient availability, and the older forests had higher soil water content. Redundancy analysis based on species abundance and environmental factors revealed groups of seedlings that dominate in different stages of succession. Seedlings in different stages of succession had different strategies of biomass allocation for harvesting resources that varied in availability. Species characteristic of younger forest had higher allocation to roots and higher specific leaf area, while species characteristic of older forest had higher allocation to leaves. Our study suggests that the variations and trade‐offs in the major functional traits of tree seedlings among successional classes may reflect changes in environmental conditions during succession.  相似文献   
77.
Although differences in canopy openness, herbivory and their interaction may promote species coexistence, how these factors affect pioneer tree species and potentially limit growth, and survival has been poorly studied, particularly in tropical South Asia. We monitored the effect of canopy openness and herbivore damage on seedling survival and growth of 960 individuals of six pioneer tree species: Dillenia triquetra, Macaranga indica, Macaranga peltata, Schumacheria castaneifolia, Trema orientalis, and Wendlandia bicuspidata. Seedlings were placed in four gap‐understory positions—center, outer gap edge, inner forest edge, and understory—in four large, natural gaps within the Sinharaja World Heritage Reserve, Sri Lanka. Canopy openness positively affected survival probability beyond the 550‐d experiment, while herbivory decreased survival and was highest in understory conditions. The relative order of species survival stayed fairly consistent between gap‐understory positions and followed their known shade tolerance rankings. When averaged across all experimental conditions, T. orientalis had the lowest survival probability estimate beyond the 550‐d experiment (0.05), but the greatest capacity for growth where it successfully established, while the species with highest averaged survival probability (0.79), D. triquetra, showed the lowest growth. One species, W. bicuspidata, responded positively to herbivory by re‐sprouting. Coexistence of D. triquetra, T. orientalis, and W. bicuspidata can be explained by a trade‐off among species in survival, growth, and response to herbivory. In addition to variation in canopy light environment, herbivory may be important in determining pioneer species distribution through fine‐scale niche partitioning and should be carefully considered in reforestation efforts.  相似文献   
78.
The green leafhopper, Nephotettix virescens (Distant) (Hemiptera: Cicadellidae), occasionally damages rice in Asia either directly, by feeding on the host phloem, or indirectly by transmitting tungro virus. We assessed the nature of resistance against the leafhopper in monogenic and pyramided near‐isogenic rice lines containing the resistance genes Grh2 and Grh4. Only the pyramided line was resistant to leafhopper damage. Leafhopper nymphs and adults had high mortality and low weight gain when feeding on the pyramided line and adults laid few eggs. In contrast, although there was some minor resistance in 45‐day‐old plants that possessed either Grh2 or Grh4 genes, the monogenic lines were generally as susceptible to the leafhopper as the recurrent parent line Taichung65 (T65). Resistance in the pyramided line was stable as the plant aged and under high nitrogen, and affected each of five Philippine leafhopper populations equally. Furthermore, in a selection study, leafhoppers failed to adapt fully to the pyramided resistant line: nymph and adult survival did improve during the first five generations of selection and attained similar levels as on T65, but egg‐laying failed to improve over 10 generations. Our preliminary results suggested that resistance was associated with physiological costs to the plants in some experiments. The results of this study demonstrate the success of pyramiding resistance genes through marker‐assisted breeding, to achieve a strong and potentially durable resistance. We discuss the utility of gene pyramiding and the development of near‐isogenic lines for leafhopper management.  相似文献   
79.
Positive allometry of secondary sexual traits (whereby larger individuals have disproportionally larger traits than smaller individuals) has been called one of the most pervasive and poorly understood regularities in the study of animal form and function. Its widespread occurrence is in contrast with theoretical predictions that it should evolve only under rather special circumstances. Using a combination of mathematical modeling and simulations, here we show that positive allometry is predicted to evolve under much broader conditions than previously recognized. This result hinges on the assumption that mating success is not necessarily zero for males with the lowest trait values: for example, a male who lacks horns or antlers might still be able to copulate if encountering an unguarded female. We predict the strongest positive allometry when males typically (but not always) compete in large groups, and when trait differences decisively determine the outcome of competitive interactions.  相似文献   
80.
The wildlife populations of Northern Central African Republic experienced precipitous declines during the 1970s and 1980s. While anecdotes coming out of the region indicate that the wildlife populations remain under serious threat, little is known about their status. An aerial sample count was carried out in the Northern Central African Republic at the end of the dry season in June 2005 and covered an 85,000 km2 complex landscape containing national parks, hunting reserves and community hunting areas. Results show a dramatic decline of wildlife since the previous survey in 1985. In 20 years, large mammals’ numbers decreased by 65%, probably because of poaching and diseases brought by illegal cattle transhumance. Elephant (Loxodonta africana) and Buffon kob (Kobus kob) populations showed the greatest decline (over 80% each), while buffalo (Syncerus caffer), roan antelope (Hippotragus equinus) and Giant Lord’s Derby Eland (Taurotragus derbianus) populations seem stable or increasing over these last 20 years. The analysis of the wildlife population distribution by status of the different types of protected areas (national parks, hunting areas) showed that individual encounter rates of elephant and buffalo were lower in national parks than in neighbouring hunting areas, while those for roan, giraffe (Giraffa camelopardalis) and Buffon kob were higher in the national parks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号