首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1842篇
  免费   82篇
  国内免费   35篇
  2024年   3篇
  2023年   26篇
  2022年   30篇
  2021年   43篇
  2020年   37篇
  2019年   35篇
  2018年   39篇
  2017年   28篇
  2016年   28篇
  2015年   38篇
  2014年   93篇
  2013年   82篇
  2012年   45篇
  2011年   58篇
  2010年   77篇
  2009年   96篇
  2008年   71篇
  2007年   101篇
  2006年   77篇
  2005年   70篇
  2004年   60篇
  2003年   55篇
  2002年   58篇
  2001年   48篇
  2000年   42篇
  1999年   25篇
  1998年   33篇
  1997年   35篇
  1996年   12篇
  1995年   32篇
  1994年   25篇
  1993年   17篇
  1992年   29篇
  1991年   30篇
  1990年   20篇
  1989年   25篇
  1988年   31篇
  1987年   20篇
  1986年   9篇
  1985年   19篇
  1984年   45篇
  1983年   52篇
  1982年   41篇
  1981年   41篇
  1980年   29篇
  1979年   28篇
  1978年   5篇
  1977年   5篇
  1975年   3篇
  1974年   4篇
排序方式: 共有1959条查询结果,搜索用时 625 毫秒
101.
102.
The intercellular communication mediated by extracellular vesicles (EVs) has gained international interest during the last decade. Interfering with the mechanisms regulating this cellular process might find application particularly in oncology where cancer cell‐derived EVs play a role in tumour microenvironment transformation. Although several mechanisms were ascribed to explain the internalization of EVs, little is our knowledge about the fate of their cargos, which are crucial to mediate their function. We recently demonstrated a new intracellular pathway in which a fraction of endocytosed EV‐associated proteins is transported into the nucleoplasm of the host cell via a subpopulation of late endosomes penetrating into the nucleoplasmic reticulum. Silencing tetraspanin CD9 both in EVs and recipient cells strongly decreased the endocytosis of EVs and abolished the nuclear transfer of their cargos. Here, we investigated whether monovalent Fab fragments derived from 5H9 anti‐CD9 monoclonal antibody (referred hereafter as CD9 Fab) interfered with these cellular processes. To monitor the intracellular transport of proteins, we used fluorescent EVs containing CD9‐green fluorescent protein fusion protein and various melanoma cell lines and bone marrow‐derived mesenchymal stromal cells as recipient cells. Interestingly, CD9 Fab considerably reduced EV uptake and the nuclear transfer of their proteins in all examined cells. In contrast, the divalent CD9 antibody stimulated both events. By impeding intercellular communication in the tumour microenvironment, CD9 Fab‐mediated inhibition of EV uptake, combined with direct targeting of cancerous cells could lead to the development of novel anti‐melanoma therapeutic strategies.  相似文献   
103.
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes.

Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint  相似文献   

104.
105.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   
106.
107.
FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development.  相似文献   
108.
The heart is the first organ to form and function in the vertebrate embryo. Furthermore, differences between the left and right sides of the embryo become first detectable during cardiac development. We observed strong cardiac laterality phenotypes in medaka embryos by manipulating Groucho protein activity. The phenotypes produced by misexpressing Tle4 and the dominant-negative Aes reveal a general effect of these corepressor proteins on left-right (LR) development. With the help of an inducible expression system, we were able to define temporally different phases for these effects. In an early phase during gastrulation, Groucho proteins regulate Brachyury expression in the dorsal forerunner cells, which later gives rise to the Kupffer's vesicle (KV). The interference of endogenous Groucho proteins by misexpression of Aes leads to KVs of reduced size, whereas overexpression of Tle4 results in enlarged KVs. The expression level of the cilia marker Lrd was also affected both positively and negatively from these treatments. In the late phase during somitogenesis, Groucho proteins regulate the asymmetric activities of Nodal and Lefty genes. Altering canonical Wnt signaling produced similar results in late embryos, however, this did not affect KV morphogenesis or Lrd expression in early embryos. Therefore, changes in Kupffer's vesicle morphogenesis and the laterality of visceral organs following alterations in Groucho corepressor levels demonstrate two distinct phases in which Groucho proteins help establish LR asymmetry in medaka fish.  相似文献   
109.
Zhao C  Slevin JT  Whiteheart SW 《FEBS letters》2007,581(11):2140-2149
N-ethylmaleimide sensitive factor (NSF) is an ATPases associated with various cellular activities protein (AAA), broadly required for intracellular membrane fusion. NSF functions as a SNAP receptor (SNARE) chaperone which binds, through soluble NSF attachment proteins (SNAPs), to SNARE complexes and utilizes the energy of ATP hydrolysis to disassemble them thus facilitating SNARE recycling. While this is a major function of NSF, it does seem to interact with other proteins, such as the AMPA receptor subunit, GluR2, and beta2-AR and is thought to affect their trafficking patterns. New data suggest that NSF may be regulated by transient post-translational modifications such as phosphorylation and nitrosylation. These new aspects of NSF function as well as its role in SNARE complex dynamics will be discussed.  相似文献   
110.
Lippert U  Ferrari DM  Jahn R 《FEBS letters》2007,581(18):3479-3484
Mast cells are important players in innate immunity and mediate allergic responses. Upon stimulation, they release biologically active mediators including histamine, cytokines and lysosomal hydrolases. We used permeabilized rat basophilic leukaemia cells as model to identify R-SNAREs (soluble NSF (N-ethylmaleimide-sensitive fusion protein)) mediating exocytosis of hexosaminidase from mast cells. Of a complete set of recombinant mammalian R-SNAREs, only vesicle associated membrane protein (VAMP8)/endobrevin consistently blocked hexosaminidase release, which was also insensitive to treatment with clostridial neurotoxins. Thus, VAMP8, which also mediates fusion of late endosomes and lysosomes, plays a major role in hexosaminidase release, strengthening the view that mast cell granules share properties of both secretory granules and lysosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号