首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11377篇
  免费   670篇
  国内免费   2099篇
  2023年   202篇
  2022年   296篇
  2021年   356篇
  2020年   320篇
  2019年   440篇
  2018年   497篇
  2017年   307篇
  2016年   299篇
  2015年   315篇
  2014年   789篇
  2013年   920篇
  2012年   550篇
  2011年   641篇
  2010年   552篇
  2009年   606篇
  2008年   641篇
  2007年   772篇
  2006年   578篇
  2005年   536篇
  2004年   393篇
  2003年   389篇
  2002年   348篇
  2001年   268篇
  2000年   239篇
  1999年   204篇
  1998年   165篇
  1997年   133篇
  1996年   143篇
  1995年   121篇
  1994年   113篇
  1993年   90篇
  1992年   75篇
  1991年   112篇
  1990年   64篇
  1989年   71篇
  1988年   49篇
  1987年   49篇
  1986年   49篇
  1985年   95篇
  1984年   171篇
  1983年   138篇
  1982年   165篇
  1981年   114篇
  1980年   143篇
  1979年   140篇
  1978年   103篇
  1977年   108篇
  1976年   74篇
  1975年   52篇
  1974年   55篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
Photosystem II (PSII) is a membrane-bound protein complex that oxidizes water to produce energized protons, which are used to built up a proton gradient across the thylakoidal membrane in the leafs of plants. This light-driven reaction is catalyzed by withdrawing electrons from the Mn4CaO5-cluster (Mn-cluster) in four discrete oxidation steps [S1 − (S4 / S0)] characterized in the Kok-cycle. In order to understand in detail the proton release events and the subsequent translocation of such energized protons, the protonation pattern of the Mn-cluster need to be elucidated. The new high-resolution PSII crystal structure from Umena, Kawakami, Shen, and Kamiya is an excellent basis to make progress in solving this problem. Following our previous work on oxidation and protonation states of the Mn-cluster, in this work, quantum chemical/electrostatic calculations were performed in order to estimate the pKa of different protons of relevant groups and atoms of the Mn-cluster such as W2, O4, O5 and His337. In broad agreement with previous experimental and theoretical work, our data suggest that W2 and His337 are likely to be in hydroxyl and neutral form, respectively, O5 and O4 to be unprotonated. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   
973.
Unique species of ceramide (Cer) with very-long-chain polyunsaturated fatty acid (VLCPUFA), mainly 28–32 carbon atoms, 4–5 double bonds, in nonhydroxy and 2-hydroxy forms (n-V Cer and h-V Cer, respectively), are generated in rat spermatozoa from the corresponding sphingomyelins during the acrosomal reaction. The aim of this study was to determine the properties of these sperm-distinctive ceramides in Langmuir monolayers. Individual Cer species were isolated by HPLC and subjected to analysis of surface pressure, surface potential, and Brewster angle microscopy (BAM) as a function of molecular packing. In comparison with known species of Cer, n-V Cer and h-V Cer species showed much larger mean molecular areas and increased molecular dipole moments in liquid expanded phases, which suggest bending and partial hydration of the double bonded portion of the VLCPUFA. The presence of the 2-hydoxyl group induced a closer molecular packing in h-V Cer than in their chain-matched n-V Cer. In addition, all these Cer species showed liquid-expanded to liquid-condensed transitions at room temperature. Existence of domain segregation was confirmed by BAM. Additionally, thermodynamic analysis suggests a phase transition close to the physiological temperature for VLCPUFA-Cers if organized as bulk dispersions.  相似文献   
974.
The binding affinity of the two substrate–water molecules to the water-oxidizing Mn4CaO5 catalyst in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae was studied in the S2 and S3 states by the exchange of bound 16O-substrate against 18O-labeled water. The rate of this exchange was detected via the membrane-inlet mass spectrometric analysis of flash-induced oxygen evolution. For both redox states a fast and slow phase of water-exchange was resolved at the mixed labeled m/z 34 mass peak: kf = 52 ± 8 s− 1 and ks = 1.9 ± 0.3 s− 1 in the S2 state, and kf = 42 ± 2 s− 1 and kslow = 1.2 ± 0.3 s− 1 in S3, respectively. Overall these exchange rates are similar to those observed previously with preparations of other organisms. The most remarkable finding is a significantly slower exchange at the fast substrate–water site in the S2 state, which confirms beyond doubt that both substrate–water molecules are already bound in the S2 state. This leads to a very small change of the affinity for both the fast and the slowly exchanging substrates during the S2 → S3 transition. Implications for recent models for water-oxidation are briefly discussed.  相似文献   
975.
Influenza A virus strains adopt different host specificities mainly depending on their hemagglutinin (HA) protein. Via HA, the virus binds sialic acid receptors of the host cell and, upon endocytic uptake, HA triggers fusion between the viral envelope bilayer and the endosomal membrane by a low pH-induced conformational change leading to the release of the viral genome into the host cell cytoplasm. Both functions are crucial for viral infection enabling the genesis of new progeny virus.  相似文献   
976.
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.  相似文献   
977.
978.
Polyomavirus BK (BKV) infection is an important cause of renal allograft failure. Viral microRNAs are known to play a crucial role in viral replication. This study investigated the expression of BKV-encoded microRNAs (miR-B1) in patients with polyomavirus-associated nephropathy (PVAN) and their role in viral replication. Following BKV infection in renal proximal tubular cells, the 3p and 5p miR-B1 levels were significantly increased. Cells transfected with the vector containing the miR-B1 precursor (the miR-B1 vector) showed a significant increase in expression of 3p and 5p miR-B1 and decrease in luciferase activity of a reporter containing the 3p and 5p miR-B1 binding sites, compared to cells transfected with the miR-B1-mutated vector. Transfection of the miR-B1 expression vector or the 3p and 5p miR-B1 oligonucleotides inhibited expression of TAg. TAg-enhanced promoter activity and BKV replication were inhibited by miR-B1. In contrast, inhibition of miR-B1 expression by addition of miR-B1 antagomirs or silencing of Dicer upregulated the expression of TAg and VP1 proteins in BKV-infected cells. Importantly, patients with PVAN had significantly higher levels of 3p and 5p miR-B1 compared to renal transplant patients without PVAN. In conclusion, we demonstrated that (1) miR-B1 expression was upregulated during BKV infection and (2) miR-B1 suppressed TAg-mediated autoregulation of BKV replication. Use of miR-B1 can be evaluated as a potential treatment strategy against BKV infection.  相似文献   
979.
Risk alleles within a gene desert at the 9p21 locus constitute the most prevalent genetic determinant of cardiovascular disease. Previous research has demonstrated that 9p21 risk variants influence gene expression in vascular tissues, yet the biological mechanisms by which this would mediate atherosclerosis merits further investigation. To investigate possible influences of this locus on other tissues, we explored expression patterns of 9p21-regulated genes in a panel of multiple human tissues and found that the tumor suppressor CDKN2B was highly expressed in subcutaneous adipose tissue (SAT). CDKN2B expression was regulated by obesity status, and this effect was stronger in carriers of 9p21 risk alleles. Covariation between expression of CDKN2B and genes implemented in adipogenesis was consistent with an inhibitory effect of CDKN2B on SAT proliferation. Moreover, studies of postprandial triacylglycerol clearance indicated that CDKN2B is involved in down-regulation of SAT fatty acid trafficking. CDKN2B expression in SAT correlated with indicators of ectopic fat accumulation, including markers of hepatic steatosis. Among genes regulated by 9p21 risk variants, CDKN2B appears to play a significant role in the regulation of SAT expandability, which is a strong determinant of lipotoxicity and therefore might contribute to the development of atherosclerosis.  相似文献   
980.
To characterize the luminescence properties of nanoKAZ, a 16 amino acid substituted mutant of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase, the effects of each mutated amino acid were investigated by site-specific mutagenesis. All 16 single substituted KAZ mutants were expressed in Escherichia coli cells and their secretory expressions in CHO-K1 cells were also examined using the signal peptide sequence of Gaussia luciferase. Luminescence activity of KAZ was significantly enhanced by single amino acid substitutions at V44I, A54I, or Y138I. Further, the triple mutant KAZ-V44I/A54I/Y138I, named eKAZ, was prepared and these substitutions synergistically enhanced luminescence activity, showing 66-fold higher activity than wild-KAZ and also 7-fold higher activity than nanoKAZ using coelenterazine as a substrate. Substrate specificity of eKAZ for C2- and/or C6-modified coelenterazine analogues was different from that of nanoKAZ, indicating that three amino acid substitutions may be responsible for the substrate recognition of coelenterazine to increase luminescence activity. In contrast, these substitutions did not stimulate protein secretion from CHO-K1 cells, suggesting that the folded-protein structure of KAZ might be different from that of nanoKAZ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号