首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1040篇
  免费   115篇
  国内免费   98篇
  2024年   5篇
  2023年   39篇
  2022年   38篇
  2021年   59篇
  2020年   66篇
  2019年   67篇
  2018年   65篇
  2017年   37篇
  2016年   60篇
  2015年   48篇
  2014年   80篇
  2013年   118篇
  2012年   53篇
  2011年   49篇
  2010年   25篇
  2009年   31篇
  2008年   38篇
  2007年   37篇
  2006年   36篇
  2005年   35篇
  2004年   35篇
  2003年   28篇
  2002年   18篇
  2001年   8篇
  2000年   15篇
  1999年   6篇
  1998年   16篇
  1997年   13篇
  1996年   5篇
  1995年   10篇
  1994年   13篇
  1993年   11篇
  1992年   9篇
  1991年   4篇
  1990年   6篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1984年   14篇
  1983年   10篇
  1982年   7篇
  1981年   3篇
  1979年   2篇
  1975年   1篇
  1950年   1篇
排序方式: 共有1253条查询结果,搜索用时 312 毫秒
61.
Clustered regularly interspaced short palindromic repeats (CRISPR)‐encoded immunity in Type I systems relies on the Cascade (CRISPR‐associated complex for antiviral defence) ribonucleoprotein complex, which triggers foreign DNA degradation by an accessory Cas3 protein. To establish the mechanism for adaptive immunity provided by the Streptococcus thermophilus CRISPR4‐Cas (CRISPR‐associated) system (St‐CRISPR4‐Cas), we isolated an effector complex (St‐Cascade) containing 61‐nucleotide CRISPR RNA (crRNA). We show that St‐Cascade, guided by crRNA, binds in vitro to a matching proto‐spacer if a proto‐spacer adjacent motif (PAM) is present. Surprisingly, the PAM sequence determined from binding analysis is promiscuous and limited to a single nucleotide (A or T) immediately upstream (?1 position) of the proto‐spacer. In the presence of a correct PAM, St‐Cascade binding to the target DNA generates an R‐loop that serves as a landing site for the Cas3 ATPase/nuclease. We show that Cas3 binding to the displaced strand in the R‐loop triggers DNA cleavage, and if ATP is present, Cas3 further degrades DNA in a unidirectional manner. These findings establish a molecular basis for CRISPR immunity in St‐CRISPR4‐Cas and other Type I systems.  相似文献   
62.
Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics has been facilitated by the con- struction of MSz spectral tag (MS2T) library from the total scan ESI MS/MS data, and the development of widely targeted metabolomics method using MS/MS data gathered from authentic standards. In this report, a novel strategy called step- wise multiple ion monitoring-enhanced product ions (stepwise MIM-EPI) was developed to construct the MS2T library, in which stepwise MIM was used as survey scans to trigger the acquisition of EPI. A total number of 698 (almost) non- redundant metabolites with MS2 spectra were obtained, of which 135 metabolites were identified/annotated. Integrating the data gathered from our MS2T library and other available multiple reaction monitoring (MRM) information, a widely targeted metabolomics method was developed to quantify 277 metabolites, including some phytohormones. Evaluation of the dehydration responses and natural variations of these metabolites in rice leaf not only suggested the coordinated regulation of abscisic acid (ABA) with metabolites such as serotonin derivative(s), polyamine conjugates under drought stress, but also revealed some C-glycosylated flavones as the potential markers for the discrimination of indica and japonica rice subspecies. The new MS2T library construction and widely targeted metabolomics strategy could be used as a tool for rice functional genomics.  相似文献   
63.
Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results.  相似文献   
64.
Glioblastoma multiforme is the most common malignant central nervous system tumor, and also among the most difficult to treat due to a lack of response to chemotherapeutics. New methods of countering the mechanisms that confer chemoresistance to malignant gliomas could lead to significant advances in the quest to identify novel drug combinations or targeted drug delivery systems for cancer therapy. In this study, we investigate the use of a targeted nitric oxide (NO) donor as a pretreatment to sensitize glioma cells to chemotherapy. The protein chlorotoxin (CTX) has been shown to preferentially target glioma cells, and we have developed CTX–NO, a glioma‐specific, NO‐donating CTX derivative. Pretreatment of cells with CTX–NO followed by 48‐h exposure to either carmustine (BCNU) or temozolomide (TMZ), both common chemotherapeutics used in glioma treatment, resulted in increased efficacy of both therapeutics. After CTX–NO exposure, both T98G and U‐87MG human malignant glioma cells show increased sensitivity to BCNU and TMZ. Further investigation revealed that the consequences of this combination therapy was a reduction in active levels of the cytoprotective enzyme MGMT and altered p53 activity, both of which are essential in DNA repair and tumor cell resistance to chemotherapy. The combination of CTX–NO and chemotherapeutics also led to decreased cell invasion. These studies indicate that this targeted NO donor could be an invaluable tool in the development of novel approaches to treat cancer. Biotechnol. Bioeng. 2013; 110: 1211–1220. © 2012 Wiley Periodicals, Inc.  相似文献   
65.
炎症性肠病是一种常见的免疫功能紊乱所致慢性顽固性胃肠道炎性疾病,现有的治疗手段难以根治。随着炎症性肠病分子机制研究的不断深入,在基因水平上应用核酸药物及其给药系统,对炎症性肠病发挥的独特治疗作用,已受到越来越多的关注, 并取得一定进展。本文简介炎症性肠病的发病机制,综述近年来核酸药物及其给药系统用于炎症性肠病治疗的研究进展。  相似文献   
66.
Melanoma is a paradigm of aggressive tumors with a complex and heterogeneous genetic background. Still, melanoma cells frequently retain developmental traits that trace back to lineage specification programs. In particular, lysosome-associated vesicular trafficking is emerging as a melanoma-enriched lineage dependency. However, the contribution of other lysosomal functions such as autophagy to melanoma progression is unclear, particularly in the context of metastasis and resistance to targeted therapy. Here we mined a broad spectrum of cancers for a meta-analysis of mRNA expression, copy number variation and prognostic value of 13 core autophagy genes. This strategy identified heterozygous loss of ATG5 at chromosome band 6q21 as a distinctive feature of advanced melanomas. Importantly, partial ATG5 loss predicted poor overall patient survival in a manner not shared by other autophagy factors and not recapitulated in other tumor types. This prognostic relevance of ATG5 copy number was not evident for other 6q21 neighboring genes. Melanocyte-specific mouse models confirmed that heterozygous (but not homozygous) deletion of Atg5 enhanced melanoma metastasis and compromised the response to targeted therapy (exemplified by dabrafenib, a BRAF inhibitor in clinical use). Collectively, our results support ATG5 as a therapeutically relevant dose-dependent rheostat of melanoma progression. Moreover, these data have important translational implications in drug design, as partial blockade of autophagy genes may worsen (instead of counteracting) the malignant behavior of metastatic melanomas.  相似文献   
67.
转移性结直肠癌抗血管生成靶向治疗的研究进展   总被引:1,自引:1,他引:0  
近年来,由于各种新的化疗药物及分子靶向药物的使用,转移性结直肠癌(metastatic colorectal cancer,m CRC)的个体化治疗逐步取得了重要的成果。研究表明,抗血管生成靶向药物与化疗药物的联合使用作为转移性结直肠癌的一线治疗方案,可明显改善治疗效果,延长患者的生存时间。血管内皮生长因子(vascularendothelial growth factor,VEGF)是肿瘤血管生成过程中最主要的因子。贝伐单抗是通过基因工程技术得到的针对血管内皮生长因子-A(VEGF-A)的单克隆抗体,作为抗血管生成靶向药物用于转移性结直肠癌的临床治疗。本文对近年来转移性结直肠癌的抗血管生成靶向治疗,尤其是贝伐单抗治疗的相关研究进展进行综述并展望未来抗血管生成靶向治疗的发展前景。  相似文献   
68.
Head and neck squamous cell cancer(HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of the disease. In most cases, treatment fails to obtain total cancer cure. In recent years, it appears that one of the key determinants of treatment failure may be the presence of cancer stem cells(CSCs) that escape currently available therapies. CSCs form a small portion of the total tumor burden but may play a disproportionately important role in determining outcomes. CSCs have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In HNSCC, CSCs have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In the light of such observations, the present review summarizes biological characteristics of CSCs in HNSCC, outlines targeted strategies for the successful eradication of CSCs in HNSCC including targeting the self-renewal controlling pathways, blocking epithelial mesenchymal transition, niche targeting, immunotherapy approaches and highlights the need to better understand CSCs biology for new treatments modalities.  相似文献   
69.
70.
ATP‐dependent DNA end recognition and nucleolytic processing are central functions of the Mre11/Rad50 (MR) complex in DNA double‐strand break repair. However, it is still unclear how ATP binding and hydrolysis primes the MR function and regulates repair pathway choice in cells. Here, Methanococcus jannaschii MR‐ATPγS‐DNA structure reveals that the partly deformed DNA runs symmetrically across central groove between two ATPγS‐bound Rad50 nucleotide‐binding domains. Duplex DNA cannot access the Mre11 active site in the ATP‐free full‐length MR complex. ATP hydrolysis drives rotation of the nucleotide‐binding domain and induces the DNA melting so that the substrate DNA can access Mre11. Our findings suggest that the ATP hydrolysis‐driven conformational changes in both DNA and the MR complex coordinate the melting and endonuclease activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号