首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   32篇
  国内免费   49篇
  2023年   9篇
  2022年   12篇
  2021年   29篇
  2020年   17篇
  2019年   17篇
  2018年   32篇
  2017年   27篇
  2016年   21篇
  2015年   36篇
  2014年   83篇
  2013年   112篇
  2012年   83篇
  2011年   74篇
  2010年   71篇
  2009年   33篇
  2008年   75篇
  2007年   45篇
  2006年   44篇
  2005年   48篇
  2004年   38篇
  2003年   29篇
  2002年   31篇
  2001年   19篇
  2000年   13篇
  1999年   27篇
  1998年   23篇
  1997年   12篇
  1996年   21篇
  1995年   21篇
  1994年   14篇
  1993年   18篇
  1992年   8篇
  1991年   7篇
  1990年   13篇
  1989年   9篇
  1988年   11篇
  1987年   11篇
  1986年   14篇
  1985年   18篇
  1984年   23篇
  1983年   24篇
  1982年   24篇
  1981年   9篇
  1980年   7篇
  1979年   10篇
  1978年   6篇
  1976年   3篇
  1974年   2篇
  1973年   7篇
  1972年   3篇
排序方式: 共有1349条查询结果,搜索用时 15 毫秒
101.
102.
A part of eukaryotic tRNA genes harbor an intron at one nucleotide 3' to the anticodon, so that removal of the intron is an essential processing step for tRNA maturation. While some tRNA introns have important roles in modification of certain nucleotides, essentiality of the tRNA intron in eukaryotes has not been tested extensively. This is partly because most of the eukaryotic genomes have multiple genes encoding an isoacceptor tRNA. Here, we examined whether the intron of tRNA-Trp(CCA) genes, six copies of which are scattered on the genome of yeast, Saccharomyces cerevisiae, is essential for growth or translation of the yeast in vivo. We devised a procedure to remove all of the tRNA introns from the yeast genome iteratively with marker cassettes containing both positive and negative markers. Using this procedure, we removed all the introns from the six tRNA-Trp(CCA) genes, and found that the intronless strain grew normally and expressed tRNA-Trp(CCA) in an amount similar to that of the wild-type genes. Neither incorporation of (35)S-labeled amino acids into a TCA-insoluble fraction nor the major protein pattern on SDS-PAGE/2D gel were affected by complete removal of the intron, while expression levels of some proteins were marginally affected. Therefore, the tRNA-Trp(CCA) intron is dispensable for growth and bulk translation of the yeast. This raises the possibility that some mechanism other than selective pressure from translational efficiency maintains the tRNA intron on the yeast genome.  相似文献   
103.
Dihydrouridine (DHU) positions within tRNAs have long been used as sites to covalently attach fluorophores, by virtue of their unique chemical reactivity toward reduction by NaBH(4), their abundance within prokaryotic and eukaryotic tRNAs, and the biochemical functionality of the labeled tRNAs so produced. Interpretation of experiments employing labeled tRNAs can depend on knowing the distribution of dye among the DHU positions present in a labeled tRNA. Here we combine matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) analysis of oligonucleotide fragments and thin layer chromatography to resolve and quantify sites of DHU labeling by the fluorophores Cy3, Cy5, and proflavin in Escherichia coli tRNA(Phe) and E. coli tRNA(Arg). The MALDI-MS results led us to re-examine the precise chemistry of the reactions that result in fluorophore introduction into tRNA. We demonstrate that, in contrast to an earlier suggestion that has long been unchallenged in the literature, such introduction proceeds via a substitution reaction on tetrahydrouridine, the product of NaBH(4) reduction of DHU, resulting in formation of substituted tetrahydrocytidines within tRNA.  相似文献   
104.
The binding affinities between Escherichia coli EF-Tu and 34 single and double base-pair changes in the T stem of E. coli tRNA(Thr)(UGU) were compared with similar data obtained previously for several aa-tRNAs binding to Thermus thermophilus EF-Tu. With a single exception, the two proteins bound to mutations in three T-stem base pairs in a quantitatively identical manner. However, tRNA(Thr) differs from other tRNAs by also using its rare A52-C62 pair as a negative specificity determinant. Using a plasmid-based tRNA gene replacement strategy, we show that many of the tRNA(Thr)(UGU) T-stem changes are either unable to support growth of E. coli or are less effective than the wild-type sequence. Since the inviable T-stem sequences are often present in other E. coli tRNAs, it appears that T-stem sequences in each tRNA body have evolved to optimize function in a different way. Although mutations of tRNA(Thr) can substantially increase or decrease its affinity to EF-Tu, the observed affinities do not correlate with the growth phenotype of the mutations in any simple way. This may either reflect the different conditions used in the two assays or indicate that the T-stem mutants affect another step in the translation mechanism.  相似文献   
105.
tRNA anticodon damage inflicted by the Kluyveromyces lactis γ-toxin underlies an RNA-based innate immune system that distinguishes self from nonself species. γ-toxin arrests the growth of Saccharomyces cerevisiae by incising a single phosphodiester 3' of the wobble base of tRNA(Glu(UUC)) to generate a break with 2',3'-cyclic phosphate and 5'-OH ends. Recombinant γ-toxin cleaves oligonucleotide substrates in vitro that mimic the anticodon stem-loop of tRNA(Glu). A single 2'-deoxy sugar substitution at the wobble nucleoside abolishes anticodon nuclease activity. To gain further insights to γ-toxin's substrate specificity, we tested deoxynucleoside effects at positions other than the site of transesterification. The results attest to a stringent requirement for a ribonucleoside at the uridine 5' of the wobble base. In contrast, every other nonwobble ribonucleoside in the anticodon loop can be replaced by a deoxy without significantly affecting γ-toxin's cleavage activity. Whereas either the 5' half or the 3' half of the anticodon stem can be replaced en bloc with DNA without a major effect, simultaneously replacing both strands with DNA interfered strongly, signifying that γ-toxin requires an A-form helical conformation of the anticodon stem. We purified γ-toxin mutants identified previously as nontoxic in vivo and gauged their anticodon nuclease activities in vitro. The results highlight Glu9 and Arg151 as candidate catalytic residues, along with His209 implicated previously. By analogy to other endoribonucleases, we speculate that γ-toxin drives transesterification by general acid-base catalysis (via His209 and Glu9) and transition-state stabilization (via Arg151).  相似文献   
106.
Mycalamide B (MycB) is a marine sponge-derived natural product with potent antitumor activity. Although it has been shown to inhibit protein synthesis, the molecular mechanism of action by MycB remains incompletely understood. We verified the inhibition of translation elongation by in vitro HCV IRES dual luciferase assays, ribosome assembly, and in vivo [(35)S]methinione labeling experiments. Similar to cycloheximide (CHX), MycB inhibits translation elongation through blockade of eEF2-mediated translocation without affecting the eEF1A-mediated loading of tRNA onto the ribosome, AUG recognition, or dipeptide synthesis. Using chemical footprinting, we identified the MycB binding site proximal to the C3993 28S rRNA residue on the large ribosomal subunit. However, there are also subtle, but significant differences in the detailed mechanisms of action of MycB and CHX. First, MycB arrests the ribosome on the mRNA one codon ahead of CHX. Second, MycB specifically blocked tRNA binding to the E-site of the large ribosomal subunit. Moreover, they display different polysome profiles in vivo. Together, these observations shed new light on the mechanism of inhibition of translation elongation by MycB.  相似文献   
107.
We present the almost complete (16,007 bp) mitochondrial genome of a Colossendeis megalonyx specimen from the Southern Ocean and discuss gene order and tRNA structure in a comparative phylogenetic context. Our data suggest a basal position of the colossendeid lineage corroborating earlier phylogenetic studies but disagreeing with results of a recently published study that supported a highly derived sister-group relationship of Colossendeidae and Nymphonidae. Our results, together with BLAST searches and phylogenetic comparisons, indicate that the specimen presented as Colossendeis sp. in a series of recent studies had been misidentified. It has now been identified as a nymphonid species.  相似文献   
108.
The "central dogma" of biology outlines the unidirectional flow of interpretable data from genetic sequence to protein sequence. This has led to the idea that a protein's structure is dependent only on its amino acid sequence and not its genetic sequence. Recently, however, a more than transient link between the coding genetic sequence and the protein structure has become apparent. The two interact at the ribosome via the process of co-translational protein folding. Evidence for co-translational folding is growing rapidly, but the influence of codons on the protein structure attained is still highly contentious. It is theorised that the speed of codon translation modulates the time available for protein folding and hence the protein structure. Here, past and present research regarding synonymous codons and codon translation speed are reviewed within the context of protein structure attainment.  相似文献   
109.
Sun M  Shen X  Liu H  Liu X  Wu Z  Liu B 《Marine Genomics》2011,4(3):159-165
Mitochondrial genomes play a significant role in the reconstruction of phylogenetic relationships within metazoans. There are still many controversies concerning the phylogenetic position of the phylum Bryozoa. In this research, we have finished the complete mitochondrial genome of one bryozoan (Tubulipora flabellaris), which is the first representative from the class Stenolaemata. The complete mitochondrial genome of T. flabellaris is 13,763 bp in length and contains 36 genes, which lacks the atp8 gene in contrast to the typical metazoan mitochondrial genomes. Gene arrangement comparisons indicate that the mitochondrial genome of T. flabellaris has unique gene order when compared with other metazoans. The four known bryozoans complete mitochondrial genomes also have very different gene arrangements, indicates that bryozoan mitochondrial genomes have experienced drastic rearrangements. To investigate the phylogenetic relationship of Bryozoa, phylogenetic analyses based on amino acid sequences of 11 protein coding genes (excluding atp6 and atp8) from 26 metazoan complete mitochondrial genomes were made utilizing Maximum Likelihood (ML) and Bayesian methods, respectively. The results indicate the monopoly of Lophotrochozoa and a close relationship between Chaetognatha and Bryozoa. However, more evidences are needed to clarify the relationship between two groups. Lophophorate appeared to be polyphyletic according to our analyses. Meanwhile, neither analysis supports close relationship between Branchiopod and Phoronida. Four bryozoans form a clade and the relationship among them is T. flabellaris + (F. hispida + (B. neritina + W. subtorquata)), which is in coincidence with traditional classification system.  相似文献   
110.
Wang Y  Guo R  Li H  Zhang X  Du J  Song Z 《Marine Genomics》2011,4(3):221-228
The complete mitochondrial DNA genome of the Sichuan taimen (Hucho bleekeri) was determined by the long and accurate polymerase chain reaction (LA-PCR) and primer walking sequence method. The entire mitochondrial genome of this species is 16,997 bp in length, making it the longest among the completely sequenced Salmonidae mitochondrial genomes. It consists of two ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one control region (CR). The gene arrangement, nucleotide composition, and codon usage pattern of the mitochondrial genome are similar to those of other teleosts. A T-type mononucleotide microsatellite and an 82 bp tandem repeat were identified in the control region, which were almost identical among the three H. bleekeri individuals examined. Both phylogenetic analyses based on 12 concatenated protein-coding genes of the heavy strand and on just the control region show that H. bleekeri is a basal species in Salmoninae. In addition, Salmo, Salvelinus and Oncorhynchus all represent monophyletic groups, respectively. All freshwater species occupied basal phylogenetic positions, and also possessed various tandem repeats in their mitochondrial control regions. These results support established phylogenetic relationships among genera in Salmonidae based on morphological and molecular analyses, and are consistent with the hypothesis that Salmonidae evolved from freshwater species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号