首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   4篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2014年   5篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1985年   3篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
61.
Summary Intracellular concentrations of Na, K, Cl ([Na], [K] and [Cl], respectively) and other elements were determined in isolated monkey eccrine sweat secretory coil cells using quantitative electron probe X-ray microanalysis of freeze dried cryosections. The validity of the methodology was partially supported by qualitative agreement of the X-ray microanalysis data with those obtained by micro-titration with a helium glow spectrophotometer. [Na], [K] and [Cl] of the cytoplasm were the same as those in the nucleus in both clear and dark cells. [Na], [K], and [Cl] of the clear cells were also the same as those of the dark cells at rest and after stimulation with methacholine (MCh), suggesting that these two cell types behave like a functional syncytium. MCh stimulation induced a pharmacologically specific, dose-dependent decrease in [K] and [Cl] (as much as 65%), and a 3.7-fold increase in [Na]. In myoepithelial cells, a similar change in [Na] and [K] was noted after MCh stimulation although the decrease in [Cl] was only 20%. The MCh-induced change in [Na], [K] and [Cl] was almost completely inhibited by removal of Ca2+ from the medium. 10–4 m bumetanide inhibited the MCh-induced increase in [Na], reduced the decrease in [K] by about 50%, but slightly augmented the MCh-induced decrease in [Cl]. 10–4 m ouabain increased [Na] and decreased [K] as did MCh; however, unlike MCh, ouabain increased [Cl] by 56% after 30 min of incubation. Thus the data may be best interpreted to indicate that Ca-dependent K efflux and (perhaps also Ca-dependent) Cl efflux are the predominat initial ionic movement in muscarinic cholinergic stimulation of the eccrine sweat secretory coils and that the ouabain-sensitive Na pump plays an important role in maintenance of intracellular ions and sweat secretion.  相似文献   
62.
Both cholinergic and adrenergic stimulation can induce sweat secretion in human eccrine sweat glands, but whether cholinergic and adrenergic stimulation play same roles in rat eccrine sweat glands is still controversial. To explore the innervations, and adrenergic- and cholinergic-induced secretory response in developing and developed rat eccrine sweat glands, rat hind footpads from embryonic day (E) 15.5–20.5, postanal day (P) 1–14, P21 and adult were fixed, embedded, sectioned and subjected to immunofluorescence staining for general fiber marker protein gene product 9.5 (PGP 9.5), adrenergic fiber marker tyrosine hydroxylase (TH) and cholinergic fiber marker vasoactive intestinal peptide (VIP), and cholinergic- and adrenergic-induced sweat secretion was detected at P1–P21 and adult rats by starch-iodine test. The results showed that eccrine sweat gland placodes of SD rats were first appeared at E19.5, and the expression of PGP 9.5 was detected surrounding the sweat gland placodes at E19.5, TH at P7, and VIP at P11. Pilocarpine-induced sweat secretion was first detected at P16 in hind footpads by starch-iodine test. There was no measurable sweating when stimulated by alpha- or beta-adrenergic agonists at all the examined time points. We conclude that rat eccrine sweat glands, just as human eccrine sweat glands, co-express adrenergic and cholinergic fibers, but different from human eccrine sweat glands, cholinergic- rather than adrenergic-induced sweating plays a role in the developing and developed rat eccrine sweat glands.  相似文献   
63.
64.
The helical nature of human sweat ducts, combined with the morphological and dielectric properties of skin, suggests electromagnetic activity in the sub-THz frequency band. A detailed electromagnetic simulation model of the skin, with embedded sweat ducts, was created. The model includes realistic dielectric properties based on the measured water content of each layer of skin, derived from Raman Spectroscopy. The model was verified by comparing it to measurements of the reflection coefficient of the palms of 13 volunteers in the frequency band 350–410 GHz. They were subjected to a measurement protocol intended to induce mental stress, thereby also activating the sweat glands. The Galvanic Skin Response was concurrently measured. Using the simulation model the optimal ac-conductivity for each measurement was found. The range of variation for all subjects was found to be from 100 S/m to a maximum value of 6000 S/m with averages of 1000 S/m. These are one order of magnitude increase from the accepted values for water at these frequencies (~100 s/m at 100 GHz). Considering the known biochemical mechanism for inducing perspiration, we conclude that these ac-conductivity levels are probably valid, even though the real time measurements of sweat ac-conductivity levels inside the duct are inaccessible.  相似文献   
65.
66.
Many investigators have sought, but failed to find, ethnic differences in the number and regional distribution of active sweat glands. In this study measurements have been made of sweat secreted on one hand and also on the whole body of Whites and Blacks walking in desert heat. Whites numbered 31 men and 27 women, ages 30 to 88 years; there were 21 Black men and 31 Black women, ages 16 to 61 years. Each walked on three occasions for 1 hour at a rate that required an oxygen consumption of about 40% of aerobic capacity. Ambient temperature ranged from 32 to 44°C in 1979 and 1980; means were 38.4°C in 1979 and 36.7°C in 1980. There was no sweat in the gloves of many Blacks; this was true of only a few Whites. Volume of body sweat increased in both races with rate of walking; volume of hand sweat increased more in Whites than in Blacks. The Mann-Whitney test revealed that volumes of hand sweat were significantly greater for Whites than for Blacks. It was concluded that in desert walks most Whites and few Blacks sweat freely on their hands. In samples of hand sweat, Na+, K+, and Cl? were determined. Concentrations of each ion varied widely in both races, and were unrelated to race. Concentrations of Na+ and Cl? generally are somewhat higher in hand sweat than in body sweat; concentrations of K+ are much higher. It follows that the values for concentration of Na+ and Cl? reported in Table 3 probably are somewhat higher than would have been found in body sweat, and concentrations of K+ are probably much higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号