首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   579篇
  免费   117篇
  国内免费   7篇
  2024年   4篇
  2023年   28篇
  2022年   28篇
  2021年   48篇
  2020年   42篇
  2019年   58篇
  2018年   29篇
  2017年   34篇
  2016年   29篇
  2015年   35篇
  2014年   52篇
  2013年   66篇
  2012年   32篇
  2011年   32篇
  2010年   19篇
  2009年   23篇
  2008年   20篇
  2007年   20篇
  2006年   24篇
  2005年   14篇
  2004年   8篇
  2003年   9篇
  2002年   9篇
  2001年   10篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   2篇
  1978年   1篇
排序方式: 共有703条查询结果,搜索用时 62 毫秒
631.
Stroke is a major cerebrovascular disease threatening human health and life with high morbidity, disability and mortality. We aimed to find effective biomarkers for the early diagnosis on stroke. Nine previously reported stroke‐associated miRNAs (miR‐21, miR‐23a, miR‐29b, miR‐124, miR‐145, miR‐210, miR‐221, miR‐223 and miR‐483‐5p) were measured by quantitative real time‐PCR, and plasma high‐sensitivity C‐reactive protein (hs‐CRP) and serum interleukin 6 (IL‐6), the pro‐inflammation markers in brain injury, were examined by enzyme‐linked immunosorbent assay in 146 acute ischemic stroke patients and 96 healthy blood donors. We found that serum miR‐145 was significantly increased within 24 h after stroke onset and serum miR‐23a and miR‐221 were decreased in patients. Moreover, serum miR‐145 was strong positively correlated with plasma hs‐CRP and moderate positively correlated with serum IL‐6. Meanwhile, serum miR‐23a and miR‐221 were moderate negatively correlated with plasma hs‐CRP but not serum IL‐6. Importantly, the combination of hs‐CRP and serum miR‐145 gained a better sensitivity/spectivity for prediction of acute ischemia stroke (area under receiver operating characteristic curve from 0.794 to 0.896). Conclusively, our preliminary findings indicate that serum miR‐145 upregulated in acute ischemic stroke might be a new biomarker for acute ischemia stroke evaluation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
632.
633.
634.
635.
636.
There is evidence that electromagnetic stimulation may accelerate the healing of tissue damage following ischemia. We undertook this study to investigate the effects of low frequency pulsed electromagnetic field (PEMF) exposure on cerebral injury in a rabbit model of transient focal ischemia (2 h occlusion followed by 4 h of reperfusion). PEMF exposure (280 V, 75 Hz, IGEA Stimulator) was initiated 10 min after the onset of ischemia and continued throughout reperfusion (six exposed, six controls). Magnetic resonance imaging (MRI) and histology were used to measure the degree of ischemic injury. Exposure to pulsed electromagnetic field attenuated cortical ischemic edema on MRI at the most anterior coronal level by 65% (P < 0.001). On histologic examination, PEMF exposure reduced ischemic neuronal damage in this same cortical area by 69% (P < 0.01) and by 43% (P < 0.05) in the striatum. Preliminary data suggest that exposure to a PEMF of short duration may have implications for the treatment of acute stroke. © 1994 Wiley-Liss, Inc.  相似文献   
637.
The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient''s propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum.A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI.These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI.  相似文献   
638.
There is accumulating evidence, that ischemic preconditioning - a non-damaging ischemic challenge to the brain - confers a transient protection to a subsequent damaging ischemic insult. We have established bilateral common carotid artery occlusion as a preconditioning stimulus to induce early ischemic tolerance to transient focal cerebral ischemia in C57Bl6/J mice. In this video, we will demonstrate the methodology used for this study.  相似文献   
639.
It has been demonstrated that a short ischemic event (ischemic preconditioning, IPC) results in a subsequent resistance to severe ischemia (ischemic tolerance, IT). We have recently demonstrated the role of innate immunity and in particular of toll-like receptor (TLR) 4 in brain ischemia. Several evidences suggest that TLR4 might also be involved in IT. Therefore, we have now used an in vivo model of IPC to investigate whether TLR4 is involved in IT. A 6-min temporary bilateral common carotid arteries occlusion was used for focal IPC and it was performed on TLR4-deficient mice (C57BL/10ScNJ) and animals that express TLR4 normally (C57BL/10ScSn). To assess the ability of IPC to induce IT, permanent middle cerebral artery occlusion was performed 48 h after IPC. Stroke outcome was evaluated by determination of infarct volume and assessment of neurological scores. IPC caused neuroprotection as shown by a reduction in infarct volume and better outcome in mice expressing TLR4 normally. TLR4-deficient mice showed less IPC-induced neuroprotection than wild-type animals. Western blot analysis of tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) showed an up-regulation in the expression of these proteins in both substrains of mice measured 18, 24 and 48 h after IPC, being higher in mice with TLR4. Similarly, nuclear factor-kappa B (NF-κB) activation was observed 18, 24 and 48 h after IPC, being more intense in TLR4-expressing mice. These data demonstrate that TLR4 signalling is involved in brain tolerance as shown by the difference in the percentage of neuroprotection produced by IPC between ScSn and ScNJ (60% vs. 18%). The higher expression of TNF-α, iNOS and cyclooxygenase-2 and NF-κB activation in mice expressing TLR4 is likely to participate in this endogenous neuroprotective effect.  相似文献   
640.
Stroke is one of the most common causes of death worldwide and a major cause of acquired disability in adults. Despite advances in research during the last decade, prevention and treatment strategies still suffer from significant limitations, and therefore new theoretical and technical approaches are required. Technological advances in the proteomic and metabolomic areas, during recent years, have permitted a more effective search for novel biomarkers and therapeutic targets that may allow for effective risk stratification and early diagnosis with subsequent rapid treatment. This review provides a comprehensive overview of the latest candidate proteins and metabolites proposed as new potential biomarkers in stroke.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号