首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8595篇
  免费   1469篇
  国内免费   2457篇
  2024年   22篇
  2023年   340篇
  2022年   269篇
  2021年   260篇
  2020年   521篇
  2019年   534篇
  2018年   592篇
  2017年   547篇
  2016年   547篇
  2015年   521篇
  2014年   564篇
  2013年   690篇
  2012年   447篇
  2011年   583篇
  2010年   392篇
  2009年   512篇
  2008年   488篇
  2007年   495篇
  2006年   443篇
  2005年   376篇
  2004年   335篇
  2003年   338篇
  2002年   330篇
  2001年   278篇
  2000年   244篇
  1999年   222篇
  1998年   185篇
  1997年   154篇
  1996年   150篇
  1995年   137篇
  1994年   148篇
  1993年   102篇
  1992年   113篇
  1991年   68篇
  1990年   73篇
  1989年   67篇
  1988年   55篇
  1987年   43篇
  1986年   41篇
  1985年   58篇
  1984年   36篇
  1983年   22篇
  1982年   49篇
  1981年   26篇
  1980年   23篇
  1979年   20篇
  1978年   17篇
  1977年   8篇
  1976年   16篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low‐starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant's circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock.  相似文献   
992.
Leaf photosynthetic CO2 responses can provide insight into how major nutrients, such as phosphorus (P), constrain leaf CO2 assimilation rates (Anet). However, triose‐phosphate limitations are rarely employed in the classic photosynthesis model and it is uncertain as to what extent these limitations occur in field situations. In contrast to predictions from biochemical theory of photosynthesis, we found consistent evidence in the field of lower Anet in high [CO2] and low [O2] than at ambient [O2]. For 10 species of trees and shrubs across a range of soil P availability in Australia, none of them showed a positive response of Anet at saturating [CO2] (i.e. Amax) to 2 kPa O2. Three species showed >20% reductions in Amax in low [O2], a phenomenon potentially explained by orthophosphate (Pi) savings during photorespiration. These species, with largest photosynthetic capacity and Pi > 2 mmol P m?2, rely the most on additional Pi made available from photorespiration rather than species growing in P‐impoverished soils. The results suggest that rarely used adjustments to a biochemical photosynthesis model are useful for predicting Amax and give insight into the biochemical limitations of photosynthesis rates at a range of leaf P concentrations. Phosphate limitations to photosynthetic capacity are likely more common in the field than previously considered.  相似文献   
993.
Stem respiration plays a role in species coexistence and forest dynamics. Here we examined the intra‐ and inter‐specific variability of stem CO2 efflux (E) in dominant and suppressed trees of six deciduous species in a mixed forest stand: Fagus sylvatica L., Quercus petraea [Matt.] Liebl, Quercus pyrenaica Willd., Prunus avium L., Sorbus aucuparia L. and Crataegus monogyna Jacq. We conducted measurements in late autumn. Within species, dominants had higher E per unit stem surface area (Es) mainly because sapwood depth was higher than in suppressed trees. Across species, however, differences in Es corresponded with differences in the proportion of living parenchyma in sapwood and concentration of non‐structural carbohydrates (NSC). Across species, Es was strongly and NSC marginally positively related with an index of drought tolerance, suggesting that slow growth of drought‐tolerant trees is related to higher NSC concentration and Es. We conclude that, during the leafless period, E is indicative of maintenance respiration and is related with some ecological characteristics of the species, such as drought resistance; that sapwood depth is the main factor explaining variability in Es within species; and that the proportion of NSC in the sapwood is the main factor behind variability in Es among species.  相似文献   
994.
The development of ectomycorrhizal associations is crucial for growth of many forest trees. However, the signals that are exchanged between the fungus and the host plant during the colonization process are still poorly understood. In this study, we have identified the relationship between expression patterns of Laccaria bicolor aquaporin LbAQP1 and the development of ectomycorrhizal structures in trembling aspen (Populus tremuloides) seedlings. The peak expression of LbAQP1 was 700‐fold higher in the hyphae within the root than in the free‐living mycelium after 24 h of direct interaction with the roots. Moreover, in LbAQP1 knock‐down strains, a non‐mycorrhizal phenotype was developed without the Hartig net and the expression of the mycorrhizal effector protein MiSSP7 quickly declined after an initial peak on day 5 of interaction of the fungal hyphae with the roots. The increase in the expression of LbAQP1 required a direct contact of the fungus with the root and it modulated the expression of MiSSP7. We have also determined that LbAQP1 facilitated NO, H2O2 and CO2 transport when heterologously expressed in yeast. The report demonstrates that the L. bicolor aquaporin LbAQP1 acts as a molecular signalling channel, which is fundamental for the development of Hartig net in root tips of P. tremuloides.  相似文献   
995.
【目的】本研究旨在确定四川达州白背飞虱Sogatella furcifera(Horváth)迁入虫源地及其降落机制,以期为川东地区白背飞虱预警和有效防控提供依据。【方法】运用大气质点轨迹分析平台HYSPLIT4.8对1991-2013年达州灯下白背飞虱主要迁入高峰日进行轨迹模拟,并运用气象图形处理软件Grads对主要迁入高峰日进行气象背景分析。【结果】达州白背飞虱主要在6-7月迁入,7月份是迁入高峰期。6月虫源主要来自广西西北、中部地区;7月虫源主要来自贵州中西部、北部,广西西北部和云南东北部也可提供部分虫源。【结论】四川达州白背飞虱迁入虫源主要来自贵州大部,部分来自云南东北部和广西西北部。由于气候条件和地形胁迫引起的降水、垂直气流和风向切变是白背飞虱大规模集中降落的主要原因。  相似文献   
996.
997.
The structural and mechanical properties of methane and carbon dioxide hydrates were investigated using density functional theory simulations. Well-established equations of state of solids and exchange-correlation functionals were used for fitting the unit lattice total energy as a function of volume, and the full second-order elastic constants of these two gas hydrates were determined by energy–strain analyses. The polycrystalline elastic properties were also calculated from the unit lattice results. The final results for methane hydrate agree well with available experimental data and with other theoretical results. The two gas hydrates were found to be highly elastically isotropic, but they differed significantly in shear properties. The presented results for carbon dioxide hydrates are the first complete set reported so far. The results are a significant contribution to the ab initio material characterisation of gas hydrates required for ongoing fundamental studies and technological applications.  相似文献   
998.
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic‐active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane‐localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element‐companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.  相似文献   
999.
An increasing proportion of the Earth''s surface is illuminated at night. In aquatic ecosystems, artificial light at night (ALAN) may influence microbial communities living in the sediments. These communities are highly diverse and play an important role in the global carbon cycle. We combined field and laboratory experiments using sediments from an agricultural drainage system to examine how ALAN affects communities and alters carbon mineralization. Two identical light infrastructures were installed parallel to a drainage ditch before the start of the experiment. DNA metabarcoding indicated that both sediment communities were similar. After one was lit for five months (July–December 2012) we observed an increase in photoautotroph abundance (diatoms, Cyanobacteria) in ALAN-exposed sediments. In laboratory incubations mimicking summer and winter (six weeks each), communities in sediments that were exposed to ALAN for 1 year (July 2012–June 2013) showed less overall seasonal change compared with ALAN-naive sediments. Nocturnal community respiration was reduced in ALAN-exposed sediments. In long-term exposed summer-sediments, we observed a shift from negative to positive net ecosystem production. Our results indicate ALAN may alter sediment microbial communities over time, with implications for ecosystem-level functions. It may thus have the potential to transform inland waters to nocturnal carbon sinks.  相似文献   
1000.
Seagrasses are among the Earth''s most efficient and long-term carbon sinks, but coastal development threatens this capacity. We report new evidence that disturbance to seagrass ecosystems causes release of ancient carbon. In a seagrass ecosystem that had been disturbed 50 years ago, we found that soil carbon stocks declined by 72%, which, according to radiocarbon dating, had taken hundreds to thousands of years to accumulate. Disturbed soils harboured different benthic bacterial communities (according to 16S rRNA sequence analysis), with higher proportions of aerobic heterotrophs compared with undisturbed. Fingerprinting of the carbon (via stable isotopes) suggested that the contribution of autochthonous carbon (carbon produced through plant primary production) to the soil carbon pool was less in disturbed areas compared with seagrass and recovered areas. Seagrass areas that had recovered from disturbance had slightly lower (35%) carbon levels than undisturbed, but more than twice as much as the disturbed areas, which is encouraging for restoration efforts. Slow rates of seagrass recovery imply the need to transplant seagrass, rather than waiting for recovery via natural processes. This study empirically demonstrates that disturbance to seagrass ecosystems can cause release of ancient carbon, with potentially major global warming consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号