首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3158篇
  免费   288篇
  国内免费   301篇
  2024年   9篇
  2023年   50篇
  2022年   53篇
  2021年   94篇
  2020年   107篇
  2019年   115篇
  2018年   105篇
  2017年   108篇
  2016年   116篇
  2015年   116篇
  2014年   137篇
  2013年   246篇
  2012年   110篇
  2011年   136篇
  2010年   98篇
  2009年   130篇
  2008年   200篇
  2007年   175篇
  2006年   160篇
  2005年   138篇
  2004年   135篇
  2003年   120篇
  2002年   131篇
  2001年   96篇
  2000年   78篇
  1999年   82篇
  1998年   70篇
  1997年   97篇
  1996年   57篇
  1995年   56篇
  1994年   38篇
  1993年   49篇
  1992年   40篇
  1991年   30篇
  1990年   30篇
  1989年   34篇
  1988年   33篇
  1987年   26篇
  1986年   23篇
  1985年   21篇
  1984年   16篇
  1983年   25篇
  1982年   11篇
  1981年   14篇
  1980年   4篇
  1979年   7篇
  1978年   7篇
  1977年   5篇
  1973年   2篇
  1972年   3篇
排序方式: 共有3747条查询结果,搜索用时 157 毫秒
41.
The theory of interaction parameters has thus far been based on the free-energy relationships in the formation of ternary complexes formed between a pair of ligands and a protein molecule. The concept has been formulted in terms of a thermodynamic square comprised of the free protein, the two binary complexes, and the ternary complex. However, an increasing number of proteins have been found to exist as equilibrium mixtures of two macrostates. The equilibrium constants for such two-state transitions vary quite considerably between the various binary and ternary complexes of a given protein. We show here that the interpretations of interaction parameters in such two-state systems, requiring the use of a thermodynamic cube, are much more complex than those based on the classic thermodynamic square commonly employed. We demonstrate the use of enthalpies of interaction and heat capacities of interaction to analyze the source of observed free enerigies of interaction in such systems. Specifically, we find that measured negative interaction parameters may arise simply from the inability of a system to achieve all of the positive component effects anticipated by the conventional formulation.  相似文献   
42.
To investigate the effect of endogenous proteolysis on the molecular weights of the benzodiazepine binding proteins, brains of trout, chicken, and rat were removed immediately after death and stored at room temperature for various periods of time before they were frozen. Photoaffinity labeling of membranes with [3H]flunitrazepam, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography, revealed proteolytic fragments of 47K in trout, chicken, and rat. The proteolysis set in rapidly after death. Seemingly in parallel with the degradation observed fluorographically, the affinity for [3H]flunitrazepam increased without systematic changes in receptor density. The degradation pattern was not identical to that of the photolabeled trypsinized benzodiazepine binding proteins. The endogenous proteolytic fragments were deglycosylated in two steps. In conclusion, proteolytic effects must be taken into account when interpreting labeling patterns and binding parameters.  相似文献   
43.
Experiments were conducted on 1-year-old Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and 2- to 3-month-old alder [Alnus rubra (Bong)] seedlings growing in drying soils to determine the relative influence of root and leaf water status on stomatal conductance (gc). The water status of shoots was manipulated independently of that of the roots using a pressure chamber that enclosed the root system. Pressurizing the chamber increases the turgor of cells in the shoot but not in the roots. Seedling shoots were enclosed in a whole-plant cuvette and transpiration and net photosynthesis rates measured continuously. In both species, stomatal closure in response to soil drying was progressively reversed with increasing pressurization. Responses occurred within minutes of pressurization and measurements almost immediately returned to pre-pressurization levels when the pressure was released. Even in wet soils there was a significant increase in gc with pressurization. In Douglas fir, the stomatal response to pressurization was the same for seedlings grown in dry soils for up to 120 d as for those subjected to drought stress over 40 to 60 d. The stomatal conductance of both Douglas fir and alder seedlings was less sensitive to root chamber pressure at higher vapour pressure deficits (D), and stomatal closure in response to increasing D from 1.04 to 2.06 kPa was only partially reversed by pressurization. Our results are in contrast to those of other studies on herbaceous species, even though we followed the same experimental approach. They suggest that it is not always appropriate to invoke a ‘feedforward’ model of short-term stomatal response to soil drying, whereby chemical messengers from the roots bring about stomatal closure.  相似文献   
44.
Prediction of thermodynamic parameters of protein-protein and antigen-antibody complex formation from high resolution structural parameters has recently received much attention, since an understanding of the contributions of different fundamental processes like hydrophobic interactions, hydrogen bonding, salt bridge formation, solvent reorganization etc. to the overall thermodynamic parameters and their relations with the structural parameters would lead to rational drug design. Using the results of the dissolution of hydrocarbons and other model compounds the changes in heat capacity (Cp), enthalpy (H) and entropy (S) have been empirically correlated with the polar and apolar surface areas buried during the process of protein folding/unfolding and protein-ligand complex formation. In this regard, the polar and apolar surfaces removed from the solvent in a protein-ligand complex have been calculated from the experimentally observed values of changes in heat capacity (Cp) and enthalpy (H) for protein-ligand complexes for which accurate thermodynamic and high resolution structural data are available, and the results have been compared with the x-ray crystallographic observations. Analyses of the available results show poor correlation between the thermodynamic and structural parameters. Probable reasons for this discrepancy are mostly related with the reorganization of water accompanying the reaction which is indeed proven by the analyses of the energetics of the binding of the wheat germ agglutinin to oligosaccharides.  相似文献   
45.
We determined whether increase in cold hardiness of Rhododendron cv. Catawbiense Boursault induced by water stress was correlated with changes in tissue water relations. Water content of the growing medium was either maintained near field capacity for the duration of the study or plants were subjected to drought episodes at different times between 15 July and 19 February. Watering during a drought episode was delayed until soil water content decreased below 0.4 m3 m−3 then watering was resumed at a level to maintain soil water content between 0.3 and 0.4 m3 m−3. Cold hardiness was evaluated in the laboratory with freeze tolerance tests on detached leaves. Water relations parameters were determined using pressure-volume analysis. Exposure to drought episodes increased cold hardiness during the cold acclimation stage in late summer and fall but not during the winter. When water-stressed plants were re-watered to field capacity, the previous gain in cold hardiness gradually disappeared. Water relations parameters correlating with seasonal changes of cold hardiness included dry matter content (r =−0.67). apoplastic water content (r =−0.60), and water potential at the turgor loss point (r = 0.40). Changes of cold hardiness in water-stressed plants in reference to well-watered plants were correlated with changes of all water relations parameters, except for osmotic potential at full turgor (r = 0.13). It is proposed that water stress reduced the hydration of cell walls, thereby increasing their rigidity. Increased rigidity of cell walls could result in a development of greater negative turgor pressures at subfreezing temperatures and therefore increased resistance to freeze dehydration.  相似文献   
46.
Spore germination in Dryopteris filix-mas occurs via a cascade of cellular responses, and chlorophyll formation, mitosis or rhizoid elongation are commonly used as parameters to determine spore germination. Detailed investigations of these parameters led to the hypothesis that they are regulated by different, independent phytochrome-mediated responses. This concept could be confirmed, as is described in this paper which demonstrates that perception of light via phytochrome occurs within two different phases separated in time. Presence of the far-red absorbing phytochrome form, Pfr, for 36 h, induces chlorophyll formation and the first unequal cell division, by which a rhizoid initial and a protonemal initial are formed (first phytochrome-mediated response). However, rhizoid elongation requires a second period of Pfr, presence (second phytochrome-mediated response). There is a clear temporal distinction between the first and the second phytochrome-mediated response with respect to the coupling of Pfr to the transduction chain; Pfr is unable to induce rhizoid growth until 60 h after the start of the first red irradiation. The effectivity of Pfr for inducing the second response shows an optimum at ca 96 h after the beginning of the presence of Pfr; thereafter, it declines slowly. The fluence-response relationship and the presence of red/far-red reversibility demonstrate that rhizoid elongation is a low-fluence response mediated by phytochrome and is independent of the first phytochrome response.  相似文献   
47.
Stomatal conductance in improved Pima cotton cultivars (Gossypium barbadense) has been previously shown to be positively associated with heat resistance and yield potential. In the present study we determined the mode of inheritance of stomatal conductance in crosses of six G. barbadense parents varying in origin, degree of agronomic development and stomatal conductance. Parents included a primitive tropical cotton (B368), two obsolete cultivars (St Vincent V135, Pima 32), one modern commercial line (Pima S-6) and two elite genotypes of the Pima germplasm (P70, P73). These lines showed distinct differences in stomatal conductance, under greenhouse and field conditions. The primitive B368 had the lowest conductance, and the elite lines the highest. Generation means analysis was used to quantify genetic effects in the crosses P70 × St Vincent V135, Pima S-6 × B368, Pima S-6 × Pima 32, P73 × Pima 32 and P73 × Pima S-6. Best-fit models of the inheritance of stomatal conductance varied in complexity from a simple additive-dominance model in the cross P70 × St. Vincent V135 to models displaying digenic epistatic interactions in the remaining crosses. Significant additive mean effects for stomatal conductance were detected in all crosses. Dominance mean effects were significant in the crosses P73 × Pima 32 and P73 × Pima S-6. Broadsense heritability estimates of stomatal conductance were relatively low (0.16–0.44) in all crosses except Pima S-6 × B368 (0.74). Results also show that the mode of inheritance of stomatal conductance is multigenic, and may have maternal as well as nuclear components. Recouping higher stomatal conductance levels from genetically wider crosses appears feasible and could proceed at a moderate rate. Fixing higher levels of stomatal conductance in populations from crosses of elite germplasm may be more difficult because of the presence of dominant mean effects and digenic epistatic interactions.  相似文献   
48.
A review is given of the prospects for using process-oriented models of water and nutrient uptake in improving integrated agriculture. Government-imposed restrictions on the use of external inputs will increase the likelihood of (temporary) nutrient or water stress in crop production in NW Europe and thus a better understanding is required of shoot-root-soil interactions than presently available. In modelling nutrient and water uptake, three approaches are possible: 1) models-without-roots, based on empirically derived efficiency ratios for uptake of available resources, 2) models evaluating the uptake potential of root systems as actually found in the field and 3) models which also aim at a prediction of root development as influenced by interactions with environmental factors. For the second type of models the major underlying processes are known and research can concentrate on model refinement on the one hand and practical application on the other. The main parameters required for such models are discussed and examples are given of practical applications. For the third type of models quantification of processes known only qualitatively is urgently needed.  相似文献   
49.
The intertidal wormSipunculus nudus was exposed to various temperatures for an analysis of the integrated changes in energy and acid-base status. Animals were incubated in sea water or maintained for up to 8 days at 4 and 0°C while dwelling in the sediment. Cannulation of the animals prior to experimentation allowed the analysis of blood gas parameters ( , and pH). fell to 0 torr within 8 days at 0°C. A simultaneous reduction of ventilatory activity was derived from measurements of the pattern of coelomic fluid pressure changes associated with ventilatory movements. The increase in and an onset of anaerobic metabolism, indicated by the accumulation of end products like acetate and propionate both in the coelomic fluid and the body wall musculature, led to the development of a progressive acidosis and a deviation from the alphastat regulation of intracellular pH seen in unburied animals. The drop in intracellular pH together with the depletion of the adenylates and the phosphagen, phospho-l-arginine, reflect a significant decrease in the Gibb's free-energy change of ATP hydrolysis. These changes are interpreted to indicate lethal cold injuries, because recovery was not possible when the animals were returned to 12°C after more than 2 days of exposure to 0°C. A low critical temperature indicating the onset of cold-induced anaerobiosis is concluded to exist below 4°C owing to the insufficient response of the ventilatory system to the developing hypoxia.  相似文献   
50.
Gas exchange characteristics of a hemiparasiteMelampyrum arvense L. before and after attachment to the hostCapsella bursa pastoris (L.) Med. were compared. The net photosynthetic rates (PN) on a leaf area basis were extremely low and in comparison to the value obtained for the host were about 15 % and 23 % for the unattached and attached hemiparasite, respectively. Also the concentration of photosynthetic pigments was low (as compared with the host the content of chlorophylls was about 33 % and 49 % and of carotenoids about 38 % and 36 % in the unattached and attached hemiparasite, respectively). On the other hand the rates of respiration were high (about 1.8 and 2.6 times higher in the unattached and attached hemiparasite, respectively, than in the host). In darkness stomatal conductance (gS) of the host and the unattached hemiparasite was rapidly reduced to 10 % of the value obtained in light, gS of the attached hemiparasite was decreased only by about 30%. A total reduction of gS occurred at relative water content (RWC) of 85 %, 75% and 45 % for the unattached hemiparasite, the host, and the attached hemiparasite, respectively. The transpiration (E) rate in the preparasitic stage was very low, being 2.6 and 4.5 times smaller than in the host and the attached hemiparasite, respectively. In the attached hemiparasite WUE was 7.5 and 3 times poorer than in the host and in the preparasitic stage, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号