首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2566篇
  免费   177篇
  国内免费   269篇
  2023年   35篇
  2022年   40篇
  2021年   51篇
  2020年   82篇
  2019年   86篇
  2018年   79篇
  2017年   66篇
  2016年   92篇
  2015年   84篇
  2014年   93篇
  2013年   180篇
  2012年   111篇
  2011年   91篇
  2010年   68篇
  2009年   117篇
  2008年   128篇
  2007年   120篇
  2006年   121篇
  2005年   94篇
  2004年   94篇
  2003年   101篇
  2002年   94篇
  2001年   81篇
  2000年   61篇
  1999年   88篇
  1998年   65篇
  1997年   49篇
  1996年   51篇
  1995年   56篇
  1994年   39篇
  1993年   52篇
  1992年   37篇
  1991年   27篇
  1990年   28篇
  1989年   41篇
  1988年   31篇
  1987年   22篇
  1986年   27篇
  1985年   25篇
  1984年   25篇
  1983年   22篇
  1982年   19篇
  1981年   29篇
  1980年   18篇
  1979年   14篇
  1978年   26篇
  1977年   13篇
  1975年   8篇
  1974年   9篇
  1973年   8篇
排序方式: 共有3012条查询结果,搜索用时 31 毫秒
41.
复合淀粉凝胶电泳同工酶分析   总被引:2,自引:0,他引:2  
为了克服水解马铃薯淀粉不易获得的困难,并使“I发片淀粉凝胶电泳同工酶分析”更容易开展,普通的化学试剂马铃薯淀粉(或精制食用马铃薯淀粉)和可溶性淀粉混合物加入适当 剂被用来代替水解马铃薯淀粉制作凝胶。试验结果表明:用8 ̄10%的上述混合淀粉(5:3),添加1%的琼脂粉和2 ̄4%的蔗糖,所制成的“复合淀粉凝胶”可以很好地被切片,并成功地对许多不同类群的植物材料的PGM、PGI、MDH、AAT、SKDH  相似文献   
42.
We have investigated the interactions between resource assimilation and storage in rosette leaves, and their impact on the growth and reproduction of the annual species Arabidopsis thaliana. The resource balance was experimentally perturbed by changing (i) the external nutrition, by varying the nitrogen supply; (ii) the assimilation and reallocation of resources from rosette leaves to reproductive organs, by cutting or covering rosette leaves at the time of early flower bud formation, and (iii) the internal carbon and nitrogen balance of the plants, by using isogenic mutants either lacking starch formation (PGM mutant) or with reduced nitrate uptake (NU mutant). When plants were grown on high nitrogen, they had higher concentrations of carbohydrates and nitrate in their leaves during the rosette phase than during flowering. However, these storage pools did not significantly contribute to the bulk flow of resources to seeds. The pool size of stored resources in rosette leaves at the onset of seed filling was very low compared to the total amount of carbon and nitrogen needed for seed formation. Instead, the rosette leaves had an important function in the continued assimilation of resources during seed ripening, as shown by the low seed yield of plants whose leaves were covered or cut off. When a key resource became limiting, such as nitrogen in the NU mutants and in plants grown on a low nitrogen supply, stored resources in the rosette leaves (e.g. nitrogen) were remobilized, and made a larger contribution to seed biomass. A change in nutrition resulted in a complete reversal of the plant response: plants shifted from high to low nutrition exhibited a seed yield similar to that of plants grown continuously on a low nitrogen supply, and vice versa. This demonstrates that resource assimilation during the reproductive phase determines seed production. The PGM mutant had a reduced growth rate and a smaller biomass during the rosette phase as a result of changes in respiration caused by a high turnover of soluble sugars ( Caspar et al. 1986 ; W. Schulze et al. 1991 ). During flowering, however, the vegetative growth rate in the PGM mutant increased, and exceeded that of the wild-type. By the end of the flowering stage, the biomass of the PGM mutant did not differ from that of the wild-type. However, in contrast to the wild-type, the PGM mutant maintained a high vegetative growth rate during seed formation, but had a low rate of seed production. These differences in allocation in the PGM mutant result in a significantly lower seed yield in the starchless mutants. This indicates that starch formation is not only an important factor during growth in the rosette phase, but is also important for whole plant allocation during seed formation. The NU mutant resembled the wild-type grown on a low nitrogen supply, except that it unexpectedly showed symptoms of carbohydrate shortage as well as nitrogen deficiency. In all genotypes and treatments, there was a striking correlation between the concentrations of nitrate and organic nitrogen and shoot growth on the one hand, and sucrose concentration and root growth on the other. In addition, nitrate reductase activity (NRA) was correlated with the total carbohydrate concentration: low carbohydrate levels in starchless mutants led to low NRA even at high nitrate supply. Thus the concentrations of stored carbohydrates and nitrate are directly or indirectly involved in regulating allocation.  相似文献   
43.
生淀粉高浓度酒精发酵的研究   总被引:15,自引:1,他引:14  
本研究利用国内常用的糖化酶制剂糖化生玉米面中的淀粉,同时接种酵母菌,在30℃下,探讨了玉米淀粉的高浓度酒精发酵工艺。选择到了一株产高浓度酒精酵母菌,H0菌株。发酵温度为30℃、pH4一s、加糖化酶量为每克原料300单位、酵母接种量3%(v/v)和原料加量为33.0%(w/v)时,这株酵母菌在70小时内可产生17.5%(v/v)的乙醇。如果原料加量为36.0%(w/v)时,该菌株在96小时内可以产生18.O%(v/v)的乙醇。在前一种加料情况下,成熟发酵醪中的pH为5、残还原糖为O.19%、残总糖为3.5“。在后一种加料情况下,成熟发酵醪中的pH为5、残还原糖为0.81%、残总糖为5.1%。  相似文献   
44.
大血藤科植物的分类学研究   总被引:4,自引:0,他引:4  
作者对大血藤科植物的花性、叶片内部结构形态、花粉形态、染色体核型及过氧化物酶和脂酶同工酶进行了比较研究,结果表明:1)大血藤科植物外形上的两性花,其雄蕊的形态退化、花药始终不开裂,为功能上的雌花,因此其花为单性,同株,同序或异序;12)首次指出大血藤属植物的染色体数为2n=2x=22,属小型染色体,与木通科植物2n=2x=32、30、28的染色体数明显不同,支持Stapf(1926)将其从木通科分出另立为科的观点;3)单叶和复叶可出现于同一植株上,而且在叶片内部结构、花粉形态、染色体核型、过氧化物酶及脂酶同工酶等性状上,大血藤与单叶血滕间均无实质性的差异,因此将单叶血藤归并于大血藤中。  相似文献   
45.
氮肥和底墒对小麦籽粒灌浆过程的调节效应分析   总被引:5,自引:0,他引:5  
以氮肥和底墒为决策变量,采用最优二次D饱和设计,用Logistic方程拟合各水肥处理的籽粒充实过程,并推导出一系列次级参数,分别建立了小麦籽粒灌浆强度与持续时间参数的数学模型。结果表明:生长在氮肥或底墒逆境条件下的小麦受精子房的生长潜势(Co)较大,并随逆境条件的改善而降低;千粒重(Yo)与灌浆快增期(T)的长短、最大灌浆速率(R_(max))和平均灌浆速率(R)无明显相关性,却与起始生长势、灌浆系数(T·R_(max))高度正相关,并且千粒重与灌浆系数的相关性明显大于千粒重与起始生长势的相关性;氮肥和底墒对籽粒灌浆特性具有显著的调节作用。同时还阐述了调节这些参数的水肥栽培途径。  相似文献   
46.
The role of fructan metabolism in the assimilate relations of the grain of wheat (Triticum aestivum L.) was investigated by determination of the dry matter and fructan content of grain components at short intervals during grain filling. During the initial phase of rapid expansion, most of the assimilates entering the grain were partitioned to the outer pericarp. A large fraction of these assimilates were used for the synthesis of fructan. Dry matter deposition and fructan synthesis in the outer pericarp ceased at about 5d after anthesis. At the same time, the endosperm and the inner pericarp and testa started to accumulate dry matter at a fast rate. This was also associated with significant fructan synthesis in the latter tissues. The outer pericarp lost about 45% of its former maximum dry weight between 9 and 19 d after anthesis. This loss was due almost entirely to the near complete disappearance of water-soluble carbohydrates, most of which was fructan. The inner pericarp and testa accumulated dry matter until about mid-grain filling. The fructan contents of the inner pericarp and testa and the endosperm decreased slowly towards the end of grain filling. Most of the fructans in the inner pericarp and testa and the endosperm had a low molecular weight, whereas higher molecular weight fructans predominated in the outer pericarp. The embryo did not contain fructan. The presence of low molecular weight fructans in the endosperm cavity at mid-grain filling was confirmed. It is suggested that fructan synthesis is closely linked to growth-related water deposition in the different tissues of the wheat grain and serves to sequester the surplus of imported sucrose.  相似文献   
47.
48.
The effect of simulated rainfall frequency on the pathogenicity of Pratylenchus zeae and P. brachyurus was studied in four greenhouse experiments. Corn and grain sorghum were watered at different intervals during predetermined cycles to create a gradient of water-stressed plants. Each experiment included nematode and uninoculated treatments. Growth reaction of plants to different frequencies of watering was significant but was not affected by the presence of nematodes. Pratylenchus zeae numbers differed among watering regimens on corn but not on sorghum. Numbers of P. brachyurus did not differ among watering regimens on corn or sorghum. Both lesion nematode species were harmful to corn, but sorghum increased plant growth in response to P. brachyurus. It is concluded that water stress is not the only environmental factor that influences the pathogenicity of these two species on corn and sorghum.  相似文献   
49.
Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050–2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype–environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change.  相似文献   
50.
Potato is the fourth most widely consumed staple food in the world. This study investigated the effectiveness of 0.2% wood distillate (WD), a biostimulant derived from the pyrolysis of waste plant biomass, in boosting the nutritional quality of potato tubers. The results showed that application of WD significantly increased the content of soluble sugars (sucrose +56.3%; glucose +44.9%; fructose +62.2%), starch (+35.1%) and total carbohydrates (+16.8%). Antioxidants (total antioxidant power, polyphenols, flavonoids) and most mineral elements (K, Mg, Ca, Na, Fe, Zn) were not affected. A lower content of Cu (−17.8%) and P (−24.5%) was found in WD-treated potato.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号