首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   42篇
  国内免费   25篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   7篇
  2020年   12篇
  2019年   14篇
  2018年   20篇
  2017年   18篇
  2016年   21篇
  2015年   18篇
  2014年   17篇
  2013年   22篇
  2012年   15篇
  2011年   13篇
  2010年   19篇
  2009年   22篇
  2008年   19篇
  2007年   26篇
  2006年   25篇
  2005年   20篇
  2004年   12篇
  2003年   10篇
  2002年   9篇
  2001年   10篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
101.
The addition of nocturnal, Hoplias malabaricus, and diurnal, Crenicichla alta, predatory fishes downstream of barrier waterfalls increases predation threat for a killifish, Rivulus hartii, in Trinidadian streams. We hypothesized that the diel patterning of predation risk would affect prey movement rates, and tested this hypothesis by comparing movement in river sites/zones containing both the nocturnal and diurnal predator with movement in river sites/zones containing only the nocturnal taxon. We evaluated this prediction in the framework of an intermediate threat hypothesis (ITH) that holds that movement will be highest at some intermediate level of threat. We marked prey fish in study sites in two watersheds of a river, each with waterfalls that divided the river into three zones: a predator absent zone (P0), a zone with one nocturnal predator (P1), and a zone with one nocturnal and one diurnal predator (P2), and tested the ITH prediction that movement will be ordered as P0<P1>P2. The single predator promoted longitudinal movement by Rivulus (P0<P1), while zones with the two predators retarded movement for small Rivulus (P1>P2) as predicted by the ITH. However, movement by larger, less vulnerable Rivulus remained elevated (P1=P2 or P2>P1). A displacement experiment in each zone found that threat tended to reduce the probability of a displaced fish reaching home, but the two predator zones did not differ from one another in their effect on this probability. Hence, the prediction that predator activity over the full 24 h diel cycle would retard movement, P2<P1, was not supported with respect to homing. Because habitat and predator communities change predictably from headwater streams to larger rivers in many lotic ecosystems, we present a conceptual model for predicting fish movement behavior along this continuum. The model posits an important role for predation threat, and the size and spacing of refuge patches, suggesting that human alterations of these factors will affect the natural movement of fish in streams.  相似文献   
102.
The spatial and temporal patterns of aphid-vectored spread of Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus (WMV) were monitored over two consecutive years in plantings of nontransgenic and transgenic squash ZW-20H (commercial cv. Freedom II) and ZW-20B, both expressing the coat protein genes of ZYMV and WMV. All test plants were surrounded by nontransgenic plants that were mechanically inoculated with ZYMV or WMV, and served as primary virus source. Across all trials, none of the transgenic plants exhibited systemic symptoms upon infection by ZYMV and WMV but a few of them developed localized chlorotic dots and/or blotches, and had low mixed infection rates [4% (6 of 139) of ZW-20H and 9% (13 of 139) of ZW-20B], as shown by ELISA. Geostatistical analysis of ELISA positive transgenic plants indicated, (i) a lack of spatial relationship on spread of ZYMV and WMV for ZW-20H with flat omnidirectional experimental semivariograms that fitted poorly theoretical models, and (ii) some extent of spatial dependence on ZYMV spread for ZW-20B with a well structured experimental semivariogram that fitted poorly theoretical models during the first but not the second growing season. In contrast, a strong spatial dependence on spread of ZYMV and WMV was found for nontransgenic plants, which developed severe systemic symptoms, had prevalent mixed infection rates (62%, 86 of 139), and well-defined omnidirectional experimental semivariograms that fitted a spherical model. Geostatistical data were sustained by virus transmission experiments with Myzus persicae in screenhouses, showing that commercial transgenic squash ZW-20H alter the dynamics of ZYMV and WMV epidemics by preventing secondary plant-to-plant spread.  相似文献   
103.
Vaccination can be a useful tool for control of avian influenza outbreaks in poultry, but its use is reconsidered in most of the countries worldwide because of its negative effects on the disease control. One of the most important negative effects is the potential for emergence of vaccine-resistant viruses. Actually, in the vaccination program in China and Mexico, several vaccine-resistant strains were confirmed. Vaccine-resistant strains usually cause a loss of the protection effectiveness of vaccination. Therefore, a vaccination program that engenders the emergence of the resistant strain might promote the spread of the resistant strain and undermine the control of the infectious disease, even if the vaccination protects against the transmission of a vaccine-sensitive strain. We designed and analyzed a deterministic patch-structured model in heterogeneous areas (with or without vaccination) illustrating transmission of vaccine-sensitive and vaccine-resistant strains during a vaccination program. We found that the vaccination program can eradicate the vaccine-sensitive strain but lead to a prevalence of vaccine-resistant strain. Further, interestingly, the replacement of viral strain could occur in another area without vaccination through a migration of non-infectious individuals due to an illegal trade of poultry. It is also a novel result that only a complete eradication of both strains in vaccination area can achieve the complete eradication in another areas. Thus we can obtain deeper understanding of an effect of vaccination for better development of vaccination strategies to control avian influenza spread.  相似文献   
104.
Habitat fragmentation may influence the genetic structure of populations, especially of species with low mobility. So far, these effects have been mainly studied by surveying neutral markers, and much less by looking at ecologically relevant characters. Therefore, we aimed to explore eventual patterns of covariation between population structuring in neutral markers and variation in shell morphometrics in the forest‐associated snail Discus rotundatus in relation to habitat fragment characteristics. To this end, we screened shell morphometric variability and sequence variation in a fragment of the mitochondrial 16S rDNA gene in D. rotundatus from the fragmented landscape of the Lower Rhine Embayment, Germany. The 16S rDNA of D. rotundatus was highly variable, with a total of 118 haplotypes (384 individuals) forming four clades and one unresolved group. There was a geographic pattern in the distribution of the clades with the river Rhine apparently separating two groups. Yet, at the geographic scale considered, there was no obvious effect of fragmentation on shell morphometrics and 16S rDNA variation because GST often was as high within, as between forests. Instead, the age of the habitat and (re‐)afforestation events appeared to affect shell shape and 16S rDNA in terms of the number of clades per site. The ecologically relevant characters thus supported the presumably neutral mitochondrial DNA markers by indicating that populations of not strictly stenecious species may be (relatively) stable in fragments. However, afforestation after large clearcuts and habitat gain after the amendment of deforestation are accompanied by several, seemingly persistent peculiarities, such as altered genetic composition and shell characters (e.g. aperture size). © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 839–850.  相似文献   
105.
The movement of humans and goods has facilitated the arrival of non‐native insects, some of which successfully establish and cause negative consequences to the composition, services, and functioning of ecosystems. The gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), is currently invading North American forests at variable rates, spreading by local and long‐distance movement in a process known as stratified dispersal. Newly arriving colonizers often occur considerably ahead of the population front, and a key question is the degree to which they successfully establish. Prior research has highlighted mate‐finding failures in sparse populations as a cause of an Allee effect (positive density dependence). We explored this mechanism by measuring the relationship between female mating success and background male moth densities along the gypsy moth western front in Northern Wisconsin (USA) over 2 years. The mating results were then compared with analogous previous studies in southern Wisconsin, and the southern front in West Virginia and Virginia (USA). Mate‐finding failures in low‐density populations were consistently observed to be density‐dependent across all years and locations. Mate‐finding failures in low‐density populations have important ramifications to invasive species management, particularly in predicting species invasiveness, preventing successful establishment by small founder populations, and concentrating eradication efforts where they are most likely to succeed.  相似文献   
106.
Aim Do the statistical distributions of range sizes of native and alien species differ? If so, is this because of residence time effects? And can such effects indicate an average time to a maximum? Location Ireland, Britain, Germany and the Czech Republic. Methods The data are presence or absence of higher plants in mapping units of 100 km2 (Ireland and Britain) or c. 130 km2 (Germany and the Czech Republic) in areas varying from 79 to 357 thousand km2. Logit transforms of range sizes so defined were tested for normality, and examined by ANOVA, and by loess, ordinary least square (OLS) and reduced major axis regressions. Results Current range sizes, in logits, are near normally distributed. Those of native plants are larger than those of naturalized neophytes (plants introduced since 1500 ad ) and much larger than those of casual neophytes. Archaeophytes (introduced earlier) have range sizes slightly larger than natives, except in Ireland. Residence time, the time since an invasive species arrived in the wild at a certain place, affects range sizes. The relationships of the range of naturalized neophytes to residence time are effectively straight in all four places, showing no significant curvature or asymptote back to 1500, though there are few records between 1500 and 1800. The relationships have an r2 of only about 10%. Both OLS regressions and reduced major axes can be used to estimate the time it takes for the range of a naturalized neophyte to reach a maximum. Main conclusions Established neophytes have smaller range size distributions than natives probably because many have not yet reached their maximum. We estimate it takes at least 150 years, possibly twice that, on average, for the maximum to be reached in areas of the order of 105 km2. Policy needs to allow for the variation in rates of spread and particularly the long time needed to fill ranges. Most naturalized neophytes are still expanding their ranges in Europe.  相似文献   
107.
Epidemic models have successfully included many aspects of the complex contact structure apparent in real-world populations. However, it is difficult to accommodate variations in the number of contacts, clustering coefficient and assortativity. Investigations of the relationship between these properties and epidemic behaviour have led to inconsistent conclusions and have not accounted for their interrelationship. In this study, simulation is used to estimate the impact of social network structure on the probability of an SIR (susceptible-infective-removed) epidemic occurring and, if it does, the final size. Increases in assortativity and clustering coefficient are associated with smaller epidemics and the impact is cumulative. Derived values of the basic reproduction ratio (R0) over networks with the highest property values are more than 20% lower than those derived from simulations with zero values of these network properties.  相似文献   
108.
The zebra mussel, Dreissena polymorpha, has spread through eastern North American aquatic ecosystems during the past 15 years. Whereas spread among navigable waterways was rapid, the invasion of isolated watersheds has progressed more slowly and less predictably. We examined the patterns of overland spread over multiple spatial and temporal extents including individual lake districts, states, and multi-state regions in the USA and found that only a small proportion (<8%) of suitable inland lakes have been invaded, with the rate of invasion appearing to be slowing. Of the 293 lakes known to be invaded, 97% are located in states adjacent to the Laurentian Great Lakes with over half located in Michigan. Only six states have more than 10 invaded lakes and only in Michigan and Indiana have more than 10% of suitable lakes become invaded. At smaller spatial extents, invaded lakes are often clustered within a lake-rich region across southern Michigan and northern Indiana. This clustering appears primarily due to multiple overland invasions originating from the Great Lakes followed to a lesser extent by subsequent secondary overland and downstream dispersal. Downstream spread appears responsible for only one third of the inland invasions. Temporally, invasions peaked in the late 1990s, with only 13 new invasions (0.4% of suitable lakes) reported in 2003 in the four-state region surrounding Lake Michigan. Peak rates of invasion occurred 4–6 years earlier in Michigan relative to Indiana and Wisconsin, but this time lag is likely due to differences in the establishment of Great Lake source populations rather than ‘stepping stone’ dispersal across the landscape.  相似文献   
109.
Japanese barberry (Berberis thunbergii) has been characterized as one of the most widely known and planted exotic shrubs in the United States. It was first introduced to the US in the late 1800s. By 1920 the planting of Japanese barberry was encouraged as an ornamental shrub replacing the common barberry (Berberis vulgaris). Japanese barberry began spreading from cultivation in suburban and selected rural retreats by the 1920s, and had dispersed rapidly throughout the northeast by the 1960s. By the 1970s it was recognized as a problematic invasive in the northeast. It is readily dispersed primarily by birds. Fruit production varies with light level, but even under very low light levels (4% full sun) some seeds are produced. Fruits are dispersed in late fall through late winter. Seed dispersal curves are highly leptokurtic; most seedling are found under or adjacent to adults, but a small number may be found tens of meters from the nearest adult. Japanese barberry thrives under a broad range of light and soil moisture conditions. Significant variation in stem growth can be explained as a function of light level. Even at less than 1% full sun, some positive stem growth can occur. Survival is quite high at intermediate to high light levels, and only under the lowest light levels (<1% full sun) does survival drop significantly. Biomass of Japanese barberry in field plots can be largely explained as a function of light availability and soil moisture. The biomass of co-occurring species is suppressed by Japanese barberry, and recovery is slow in the first year following Japanese barberry removal except under high light levels. Glyphosate (Roundup) applied in early spring at first leaf out, when little else is in leaf, provides an effective means of eradicating Japanese barberry populations.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号