首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   7篇
  国内免费   10篇
  2022年   1篇
  2021年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   11篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   11篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   12篇
  1997年   6篇
  1996年   10篇
  1995年   8篇
  1994年   12篇
  1993年   9篇
  1992年   9篇
  1991年   11篇
  1990年   14篇
  1989年   8篇
  1988年   17篇
  1987年   3篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1982年   4篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   7篇
  1975年   2篇
  1974年   7篇
  1973年   1篇
排序方式: 共有280条查询结果,搜索用时 31 毫秒
111.
Sucrose-phosphate synthase (SPS) from leaves of spinach (Spinacia oleracea L.) has been purified to homogeneity by a procedure involving precipitation with polyethylenglycol and chromatography over diethylaminoethylcellulose, Ω-aminohexylagarose, Mono Q and Blue Affinity columns. The purification factor was 838 and the final specific activity was 1.3 nkat · (mg protein)?1. On denaturing gels the major polypeptide was 120 kDa but there was also a variable amount of smaller polypeptides in the range of 90 to 110 kDa. A new activity stain was developed to allow visualization of SPS in gels. The holoenzyme had a molecular weight of about 240 and 480 kDa in native gels and Sepharose, respectively. A high-titre polyclonal antibody was obtained which reacted with SPS from other species including wheat, potato, banana and maize. Screening of a spinach-leaf cDNA-expression library with the antibody allowed the isolation of a full-length clone. Sequencing revealed a predicted molecular weight of 117649 Da, and considerable homology with the recently published sequence for maize leaf (Worrell et al. 1991, Plant Cell 3, 1121–1130). Expression of the spinach-leaf SPS gene in Escherichia coli resulted in biological activity, revealed by the presence of SPS activity in extracts and the accumulation of sucrose-6-phosphate and sucrose in the bacteria.  相似文献   
112.
Nitrate reductase (NR) activity is modulated in vivo by phosphorylation (inactivation)/dephosphorylation (activation) in response to light/dark signals. The dephosphorylation of phospho-NR in vitro, catalyzed by endogenous protein phosphatases, is known to be stimulated by 5'-AMP suggesting that this metabolite may be an important regulator of the activity of NR, e.g. under anoxia. To determine whether 5'-AMP might be a regulatory metabolite in vivo, excised spinach ( Spinacia oleracea ) and pea ( Pisum sativum ) leaves were provided 5-aminoimidazole-4-carboxamide riboside (AICAR) via the transpiration stream, and the apparent phosphorylation status of NR was assessed by assay of activity in the presence of free Mg2+. NR was activated in darkened spinach leaves in a time- and concentration-dependent manner when leaves were fed AICAR; there was also an accumulation of nitrite in treated leaves in the dark. The activation by AICAR could be blocked by several type 2A protein phosphatase inhibitors (microcystin-LR, okadaic acid and cantharidin), and was not the result of a reduction of kinase activity by lack of ATP because cellular adenylates were unaffected. It was confirmed that AICAR-P, but not AICAR, mimicked 5'-AMP in the activation of phospho-NR in vitro. Our results are consistent with the notion that AICAR is converted to the monophosphorylated derivative, which accumulates in cells and acts as a structural analog of 5'-AMP. Our results suggest that a rise in cytosolic [5'-AMP] may be sufficient to activate NR in vivo. AICAR should be a useful compound for identifying AMP-regulated processes in plant systems.  相似文献   
113.
电泳均一的菠菜叶片蔗糖磷酸合成酶的活力受G6P,Mg~(2 ),Mn~(2 )的调节;G6P对此酶的促进作用在F6P浓度较低时表现得比较明显;此酶对Mn~(2 )较对Mg~(2 )敏感,Mg~(2 ),Mn~(2 )对此酶的促进作用可被EDTA解除。底物F6P的饱和曲线为S型,底物UDPG的饱和曲线为双曲线型。NADP是此酶的负效应剂,NADP对F6P表现为混合型抑制,使V_m(F6P)降低和K_m(F6P)增大,3mmol/L NADP使F6P的K_m值从2.5mmol/L上升至3.8mmol/L,但不影响希尔系数,n=1.3。NADP对UDPG表现为K_m不变的非竞争性抑制,K_m(UDPG)=3.8mmol/L。  相似文献   
114.
A new simple three-day procedure for preparative isolation and purification of plastocyanin from spinach stored in the frozen state is described. This procedure is based on batch adsorption on ion-exchange resin, ammonium sulphate precipitation, and purification on a Phenyl-Sepharose hydrophobic interaction column and a single Q Sepharose High Performance ion-exchange column. Approximately 100 mg of plastocyanin with an absorbance ratio A278/A597 of 1.10±0.02 in the oxidized state was typically obtained from 12 kg of spinach leaves. The purified spinach plastocyanin is shown to be homogeneous to the resolution of free solution capillary electrophoresis.Abbreviations MES 2(N-morpholino)ethanesulfonic acid - Tris Tris(hydroxymethyl)aminomethane - FSCE free solution capillary electrophoresis  相似文献   
115.
Parameters of senescence and ethylene biosynthesis pathway were screened simultaneously in detached spinach leaves and leaf discs. Senescence was enhanced by application of 1-aminocyclopropane-1-carboxylic acid (ACC) and was retarded by amino-ethoxyvinylglycine (AVG). Evidence is presented showing that the bursts of both wound- and climacteric-like ethylene promoted senescence of detached leaves and leaf discs. This ethylene-enhanced leaf senescence was dependent on: (a) ethylene production rates in the tissue; (b) the degree of wounding. Wounding resulted in elevated levels of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), which declined in advanced stages of senescence. The results suggest that wounding might be regarded as one of the primary events in the induction of the senescence syndrome in detached leaves and leaf discs, while ethylene is implicated as a regulator of the rate of the process.  相似文献   
116.
The regulation of photosynthetic sucrose synthesis and partitioning is reviewed with particular emphasis on the role of fructose-2,6-bisphosphate and sucrose phosphate synthase. It is concluded that a hierachy of regulatory mechanisms exist, which allows partitioning to be changed without this necessarily leading to a reduction in the rate of photosynthesis. Nevertheless, experimental conditions can be defined in which photosynthesis is limited by the rate of end-product synthesis. These systems can be used to screen for genetic mutants or specific inhibitors, and to investigate a shift in sink demand or environmental factors that specifically act on carbon partitioning and/or the rate of endproduct synthesis.  相似文献   
117.
The fluorescence decay of chlorophyll in spinach thylakoids was measured as a function of the degree of closure of Photosystem II reaction centers, which was set for the flowed sample by varying either the preillumination by actinic light or the exposure of the sample to the exciting pulsed laser light. Three exponential kinetic components originating in Photosystem II were fitted to the decays; a fourth component arising from Photosystem I was determined to be negligible at the emission wavelength of 685 nm at which the fluorescence decays were measured. Both the lifetimes and the amplitudes of the components vary with reaction center closure. A fast (170–330 ps) component reflects the trapping kinetics of open Photosystem II reaction centers capable of reducing the plastoquinone pool; its amplitude decreases gradually with trap closure, which is incompatible with the concept of photosynthetic unit connectivity where excitation energy which encounters a closed trap can find a different, possibly open one. For a connected system, the amplitude of the fast fluorescence component is expected to remain constant. The slow component (1.7–3.0 ns) is virtually absent when the reaction centers are open, and its growth is attributable to the appearance of closed centers. The middle component (0.4–1.7 ns) with approximately constant amplitude may originate from centers that are not functionally linked to the plastoquinone pool. To explain the continuous increase in the lifetimes of all three components upon reaction center closure, we propose that the transmembrane electric field generated by photosynthetic turnover modulates the trapping kinetics in Photosystem II and thereby affects the excited state lifetime in the antenna in the trap-limited case.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PQ plastoquinone - PSI and PSII Photosystem I and II - QA and QB primary and secondary quinone acceptor of PSII  相似文献   
118.
An improved, non-detergent, method for preparative isolation of PS II membrane vesicles from spinach chloroplasts is presented. Thylakoids (chlorophyll (Chl) a/b ratio 2.8, Chl/P700 435) were fractionated by Yeda press treatment and aqueous two-phase partition to yield inside-out vesicles (1) (chl a/b 2.2, chl/P700 700). These vesicles were subjected a sonication — phase partitioning procedure; steps of sonication of inside-out vesicles, while still present in a dextran-polyethylene glycol two-phase system were alternated by phase partition. These steps selectively removed P700-containing membrane fragments from the inside-out vesicles and yielded a membrane fraction with improved PS II purity (Chl a/b ratio 1.9, Chl/P700 1500) and retained oxygen evolving capacity (295 mol O2 mg Chl-1 h-1).  相似文献   
119.
A synthetic gene encoding spinach acyl carrier protein I (ACP-I) was fused to a gene encoding the Fc-binding portion of staphylococcal protein A. This gene fusion, under the control of the PR promoter, was expressed at high levels in Escherichia coli producing a 42 kDa fusion protein. This fusion protein was phosphopantethenylated in E. coli. In vitro the ACP portion of the fusion protein was able to participate in acyl ACP synthetase reactions, plant malonyl-CoA:ACP transacylase (MCT) reactions, and plant fatty acid synthetase (FAS) reactions. Inhibitory effects of high ACP concentrations on in vitro plant FAS were observed with the unfused ACP-1 but not with the fusion protein. As with unfused ACP-I, the fusion protein was a poor substrate for E. coli FAS reactions. When injected into rabbits, the fusion protein was also able to generate antiserum to spinach ACP-I.  相似文献   
120.
The activity of spinach chloroplast phenolase which had been repressed by ammonium oxalate was restored by adding copper. Oxalate appears to bind to the enzyme at a single site, the binding paralleling the inhibition produced at neutral pH. The inhibition of oxalate is due to its binding with copper at the active centre to form an inactive complex, the oxalate moiety of which is releasable when more copper is added. Similar reactivation by copper was obtained with pure mushroom phenolase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号