首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8538篇
  免费   1217篇
  国内免费   5568篇
  2024年   26篇
  2023年   358篇
  2022年   410篇
  2021年   492篇
  2020年   608篇
  2019年   714篇
  2018年   673篇
  2017年   667篇
  2016年   616篇
  2015年   606篇
  2014年   595篇
  2013年   729篇
  2012年   616篇
  2011年   561篇
  2010年   490篇
  2009年   647篇
  2008年   571篇
  2007年   646篇
  2006年   557篇
  2005年   516篇
  2004年   460篇
  2003年   457篇
  2002年   355篇
  2001年   325篇
  2000年   294篇
  1999年   300篇
  1998年   223篇
  1997年   207篇
  1996年   214篇
  1995年   196篇
  1994年   179篇
  1993年   129篇
  1992年   123篇
  1991年   106篇
  1990年   116篇
  1989年   105篇
  1988年   78篇
  1987年   58篇
  1986年   56篇
  1985年   38篇
  1984年   41篇
  1983年   11篇
  1982年   48篇
  1981年   25篇
  1980年   24篇
  1979年   23篇
  1978年   7篇
  1975年   4篇
  1973年   6篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 812 毫秒
141.
Relationships between soil chemistry and population chemotype structure of Thymus pulegioides have been studied. The analysis of correlations suggest that an increased carbonate content in soil decreases the chemotype diversity of a population (as calculated by use of the Shannon index): the proportion of linalool chemotype plants rises and that of the phenol chemotype plants declines. In addition, the chemotype diversity decreases with increasing frequency of linalool chemotype, and increases with increase of carvacrol chemotype.  相似文献   
142.
Metabolic shift analysis at high cell densities   总被引:2,自引:0,他引:2  
Abstract: In high cell density cultures it is virtually inevitable that the environment to which the cells are exposed is heterogeneous. Thus, with suspended cultures, individual cells are subject to temporal changes in their environment whereas with aggregated or immobilized cells, the culture can be considered as being formed by a number of subpopulations, each with its own environmental characteristics. In addition, in a high cell density environment, high concentrations of end products may negatively influence the growth rate. This may result in the selection of organisms with an altered metabolic behaviour or with a decreased sensitivity to the adverse effects of the product. We discuss the consequences of this heterogeneity with regard to carbon source metabolism in view of the ability of many bacterial species to adapt to environmental conditions. Selection of variant organisms was found to occur with Clostridium butyricum when grown for a prolonged time in a medium containing approx. I-50 mM glucose. In contrast to the original strain, these variants could sustain a high maximal growth rate in the presence of butyric acid. In addition, they had acquired the capacity to spontaneously form aggregates and were able to carry out a completely solventogenic fermentation. Heterogeneous metabolic activity in aggregated cells is demonstrated with cultures of Lactobacillus laevolacticus , an aggregateforming lactic acid bacterium that converts glucose completely to o-lactate. By using microelectrodes, we show that the fraction of metabolically active cells decreases with increasing aggregate size: in larger aggregates steep pH gradients occur with the effect that only the outer layer of the aggregate is metabolically active, i.e. contributes to lactic acid formation, whereas with smaller aggregates all cells remain active. As a result, the net specific lactic acid production rate of the population as a whole is not invariably increased with increased aggregate size.  相似文献   
143.
The purpose of this paper is to describe the effects of CO2 and N treatments on soil pCO2, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO2 and N would cause increased root biomass which would in turn cause increases in both total soil CO2 efflux and microbial respiration. This hypothesis was only supported in part: both CO2 and N treatments caused significant increases in root biomass, soil pCO2, and calculated CO2 efflux, but there were no differences in soil microbial respiration measured in the laboratory. Both correlative and quantitative comparisons of CO2 efflux rates indicated that microbial respiration contributes little to total soil CO2 efflux in the field. Measurements of soil pCO2 and calculated CO2 efflux provided inexpensive, non-invasive, and relatively sensitive indices of belowground response to CO2 and N treatments.  相似文献   
144.
Soil samples from forest and agricultural sites in three areas of southwest France were collected to determine the effect of forest conversion to continuous intensive corn cropping with no organic matter management on soil organic carbon (C) content. Soils were humic loamy soils and site characteristics that may affect soil C were as uniform as possible (slope, elevation, texture, soil type, vegetation). Three areas were selected, with adjacent sites of various ages of cultivation (3 to 35 yr), and paired control forest sites. The ploughed horizon (0-Dt cm) and the Dt-50 cm layer were collected at each agricultural site. In forest sites, each 10 cm layer was collected systematically down to 1 meter depth. Carbon concentrations were converted to total content to a given depth as the product of concentration, depth of sample and bulk density, and expressed in units of kg m-2. For each site and each sampled layer, the mineral mass of soil was calculated, in order to base comparisons on the same soil mass rather than the same depth. The pattern of C accumulation in forest soils showed an exponential decrease with depth. Results suggested that soil organic carbon declined rapidly during the first years of cultivation, and at a slower rate thereafter. This pattern of decrease can be fitted by a bi-exponential model assuming that initial soil organic carbon can be separated into two parts, a very labile pool reduced during the first rapid decline and more refractory fractions oxidizing at a slower rate. Sampling to shallow depths (0-Dt cm) resulted in over-estimation of the rate of carbon release in proportion to the initial amount of C, and in under-estimation of the total loss of C with age. The results for the 0–50 cm horizon indicated that losses of total carbon average about 50% in these soils, ranging in initial carbon content from 19 to 32.5 kg m-2. Carbon release to the atmosphere averaged 0.8 kg m-2 yr-1 to 50 cm depth during the first 10 years of cultivation. The results demonstrate that temperate soils may also be an important source of atmospheric carbon, when they are initially high in carbon content and then cultivated intensively with no organic matter management.  相似文献   
145.
Ten soils collected from the major arable areas in Britain were used to assess the availability of soil sulphur (S) to spring wheat in a pot experiment. Soils were extracted with various reagents and the extractable inorganic SO4-S and total soluble S(SO4-S plus a fraction of organic S) were determined using ion chromatography (IC) or inductively-coupled plasma atomic emission spectrometry (ICP-AES), respectively. Water, 0.016 M KH2PO4, 0.01 M CaCl2 and 0.01 M Ca(H2PO4)2 extracted similar amounts of SO4-S, as measured by IC, which were consistently smaller than the total extractable S as measured by ICP-AES. The amounts of organic S extracted varied widely between different extractants, with 0.5 M NaHCO3 (pH 8.5) giving the largest amounts and 0.01 M CaCl2 the least. Organic S accounted for approximately 30–60% of total S extracted with 0.016 M KH2PO4 and the organic C:S ratios in this extract varied typically between 50 and 70. The concentrations of this S fraction decreased in all soils without added S after two months growth of spring wheat, indicating a release of organic S through mineralisation. All methods tested except 0.5 M NaHCO3-ICP-AES produced satisfactory results in the regression with plant dry matter response and S uptake in the pot experiment. In general, 0.016 M KH2PO4 appeared to be the best extractant and this extraction followed by ICP-AES determination was considered to be a good method to standardise on.  相似文献   
146.
The development of the epidermal layer of roots of Zea is traced from the quiescent centre to the zone where root hairs develop. In the zone of cell division a three layered coat forms on the outside of the epidermal cells consisting of the outer epidermal walls, overlaid by a two-layered pellicle composed of a thick fibrillar inner layer of polysaccharide, and a thin fibrillar outer layer of protein. The epidermal cells divide several times in the same longitudinal file but rarely across a radius to give a new longitudinal file. Thus, the radial walls become much thicker than all but the original transverse walls, and packets of up to 32 daughter cells derived from a single initial may be distinguished. The pellicle develops during these divisions as a continuum over the outer walls of the daughter cells. It is proposed that the pellicle provides a stiffening to the forward end of the root which permits it to penetrate soil without bending. Support for this hypothesis is shown by the Zea mays mutant Ageotropic in which the pellicle is absent, the epidermal surface is disorganized, and which grows crookedly through soil. In the zone of extension growth of normal roots of two Zea species the pellicle thins and disappears. Circumferential strips of the pellicle were peeled off the young epidermal cells and could be stretched to twice their length. This deformation is partly the result of the pellicle stretching and breaking above the attachments of the radial walls. After normal thinning of the pellicle, detachment of the radial walls at their outer ends produces a corrugated surface in the proximal zone of the root tips. In dicotyledons (e.g., soybean), there is no similar pellicle, but a stiff root tip is produced by a long multi-layered root cap, the proximal portion of which covers the elongating epidermal surface.  相似文献   
147.
Lolium perenne growing with high root density on a fine nylon mesh (Kuchenbuch and Jungk, 1982) caused the development of element gradients in the rhizosphere below the mesh. Micro-liter soil solutions from 2-mg soil samples were sprayed onto Formvar-coated grids and analyzed by X-ray microanalysis in a transmission electron microscope. The results were comparable to those obtained by flame photometry and atomic absorption spectrometry (AAS) of conventional soil solutions from 1 g soil. X-ray microanalysis of micro-soil solutions allows the application of different extraction procedures to even small amounts of soil usually available from rhizosphere experiments. Information about soil buffering characteristics in the rhizosphere can thus be obtained. Aluminum accumulation in the rhizosphere of small segments of single Picea abies fine roots grown in undisturbed natural forest soil could be detected with this technique.  相似文献   
148.
Pruning of hedgerow trees is an important management practice for the successful establishment of an alley cropping system. Although pruning affects biomass production, only meager evidence of this management on distribution of nutrients among the different plant organs after tree regrowth is available. This study examined the effect of pruning on the distribution and use efficiency of N and P in a N2 fixing leguminous tree species, Gliricidia sepium, and two non-N2 fixing leguminous tree species, Senna siamea and S. spectabilis, grown in a field on an Alfisol (low in P) at Fashola (Guinea Savanna Zone), Southwestern Nigeria. Four P rates, 0, 20, 40 and 80 kg P ha–1 as single superphosphate were used and management treatments included pruned versus unpruned plants. The 15N isotope dilution technique was used to measure N2 fixation in G. sepium. Partitioning of total P among different plant organs was influenced by plant species and pruning management, but was not affected by P application rates. The distribution of total P in the various plant organs followed that of dry matter yield while N partitioning had a different pattern. Pruned plants distributed about 118% more total P to branches and had a higher physiological P use efficiency (PPUE) than unpruned plants. Leaves were the biggest sink for total N and N allocation in the other plant organs was influenced by plant species and pruning management, G. sepium had relatively more of its total N and P partitioned into roots (about double that of the non-N2 fixing trees) but had a lower PPUE. Unpruned and pruned G. sepium derived 35 and 54% respectively of their total N from atmospheric N2, with about 54% of the fixed N2 being allocated to leaves and roots. Results showed that N and P pools turned over in the branches during plant regrowth after pruning but the causative factors associated with this phenomenon were not clear.  相似文献   
149.
Jörg Brunet 《Plant and Soil》1994,161(2):157-166
The influence of base cation concentrations on pH and aluminium sensitivity of the woodland grasses Bromus benekenii and Hordelymus europaeus was studied in flowing solution culture experiments. Plants were exposed to low pH (3.9, experiment 1) and Al concentrations of 19 and 37 M (experiment 2) at two base cation (Ca+Mg+K) levels, all within the ranges measured in natural forest soil solutions. Elevated base cation concentrations ameliorated both H and Al toxicity, as indicated by increased root and shoot growth. In the third experiment, interactions between pH (4.3 and 4.0) and Al (0 and 19 M) were investigated. It was shown that the combined toxicity effects of H and Al were not greater than the separate H or Al effects. Tissue concentrations of base cations and Al increased with increasing concentrations in the solution, but were also influenced by the base cation : Al ratio. Relating the experimental evidence with the composition of forest soil solutions suggests an important role of soil pH and Al in controlling the distribution of the two species. Growth conditions also differ at various soil depths. Concentrations of free cationic Al were higher and base cation concentrations lower at 5–10 cm than at 0–5 cm soil depth. Increasing base cation concentrations may protect roots from both H and Al injury during periods of drought when concentrations of most elements increase in the soil solution, whereas molar ratios between base cations, H and Al remain unchanged.  相似文献   
150.
The effects of soil P amendments and time of application on the formation of external mycelium by different arbuscular mycorrhizal (AM) fungi were studied. In the first experiment the external mycelium produced in the soil by the AM fungus Glomus etunicatum Beck. and Gerd., during the early stages of root colonization (7 and 14 days after inoculation), was quantified by the soil-agar film technique. A Brazilian Oxisol was used with three different phosphate levels, varying from deficient to supra-optimal for the plant. Significant differences were observed in the phosphate and inoculation treatments for plant dry weight, P content in the tissue, root length and root colonization, at fourteen days after planting. At 7 days, mycelium growth, root colonization and their relationship were reduced at supra-optimal P concentrations. Applications of P one week after planting reduced mycelium growth and root colonization more than when applied to the soil before planting. In a second experiment the arbuscular mycorrhizal (AM) fungi, Scutellospora heterogama (Nicol. and Gerd.) Walker and Sanders and E3 were tested and compared with Glomus etunicatum. For the species studied, the length of external hyphae per unit of colonized root length was affected by small P additions but no further significant differences were observed at high P levels. The three AM endophytes showed marked differences in their response to P in the soil: Scutellospora heterogama, although producing external mycelium more profusely than the Glomus spp., showed a higher sensitivity to soil P supply.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号