首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9662篇
  免费   1246篇
  国内免费   5570篇
  2024年   37篇
  2023年   368篇
  2022年   431篇
  2021年   511篇
  2020年   624篇
  2019年   736篇
  2018年   682篇
  2017年   684篇
  2016年   645篇
  2015年   640篇
  2014年   626篇
  2013年   825篇
  2012年   644篇
  2011年   579篇
  2010年   516篇
  2009年   670篇
  2008年   587篇
  2007年   684篇
  2006年   591篇
  2005年   546篇
  2004年   479篇
  2003年   501篇
  2002年   389篇
  2001年   374篇
  2000年   341篇
  1999年   317篇
  1998年   252篇
  1997年   232篇
  1996年   246篇
  1995年   222篇
  1994年   204篇
  1993年   173篇
  1992年   145篇
  1991年   134篇
  1990年   141篇
  1989年   128篇
  1988年   100篇
  1987年   81篇
  1986年   73篇
  1985年   54篇
  1984年   53篇
  1983年   18篇
  1982年   59篇
  1981年   34篇
  1980年   36篇
  1979年   24篇
  1978年   13篇
  1977年   5篇
  1973年   6篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
151.
Effects of soil application of Ascochyta caulina spores on seedlings of Chenopodium album and five cultivated plant species were investigated under greenhouse conditions as a part of a study on biological control of C. album. Application of A. caulina spores to soils resulted in disease development on C. album and to a lesser degree on Spinacia oleracea seedlings, but not on Beta vulgaris subspecies vulgaris, Zea mays, Triticum aestivum and Pisum sativum seedlings. Affected C. album seedlings had an abnormal olive-green colour or necrotic spots on cotyledons and hypocotyls, and were stunted or died. Affected S. oleracea seedlings were pale in colour or had necrotic spots on the cotyledons, but did not die. Time courses of disease incidence and of mortality of C. album could be described by a monomolecular model. Effects of spore density, sowing depth, soil water content, soil type and time of sowing on disease development were examined. Disease incidence and mortality were influenced by spore density, soil water content and soil type, but not by sowing depth. Spores in a moist soil maintained infectivity at least 2 wk. Spore densities of 109 to 1010 spores m-2 were required for 50% mortality of emerged C. album plants. Aspects of the development of A. caulina into a soil-applied mycoherbicide are discussed.  相似文献   
152.
At Mono Lake, California, we investigated field water relations, leaf and xylem chemistry, and gas exchange for two shrub species that commonly co-occur on marginally saline soils, and have similar life histories and rooting patterns. Both species had highest root length densities close to the surface and have large tap roots that probably reach ground water at 3.4-5.0 m on the study site. The species differed greatly in leaf water relations and leaf chemistry. Sarcobatus vermiculatus had a seasonal minimum predawn xylem pressure potential (ψpd) of -2.7 MPa and a midday potential (ψmd) of -4.1 MPa. These were significantly lower than for Chrysothamnus nauseosus, which had a minimum ψpd of -1.0 MPa and ψmd of -2.2 MPa. Sarcobatus had leaf Na of up to 9.1 % and K up to 2.7 % of dry mass, and these were significantly higher than for Chrysothamnus which had seasonal maxima of 0.4% leaf Na and 2.4 % leaf K. The molar ratios of leaf K/Na, Ca/Na, and Mg/Na were substantially lower for Sarcobatus than for Chrysothamnus. Xylem ionic contents indicated that both species excluded some Na at the root, but that Chrysothamnus was excluding much more than Sarcobatus. The higher Na content of Sarcobatus leaves was associated with greater leaf succulence, lower calculated osmotic potential, and lower xylem pressure potentials. Despite large differences in water relations and leaf chemistry, these species maintained similar diurnal patterns and rates of photosynthesis and stomatal conductance to water vapor diffusion. Sarcobatus ψpd may not reflect soil moisture availability due to root osmotic and hydraulic properties.  相似文献   
153.
Gradients in oxygen availability and salinity are among the most important environmental parameters influencing zonation in salt marsh communities. The combined effects of oxygen and salinity on the germination of two salt marsh grasses, Spartina alterniflora and Phragmites australis, were studied in growth chamber experiments. Germination of both species was initiated by emergence of the shoot and completed by root emergence. Percentage S. alterniflora germination was reduced at high salinity (40 g NaCl/L) and in decreased oxygen (5 and 2.5%). In 0% oxygen shoots emerged, but roots did not. P. australis germination was reduced at a lower salinity (25 g NaCl/L) than S. alterniflora, and inhibited at 40 g NaCl/L and in anoxia. However, a combination of hypoxia (10 and 5% O2) and moderate salinity (5 and 10 g NaCl/L) increased P. australis germination. When bare areas in the salt marsh are colonized, the different germination responses of these two species to combinations of oxygen and salt concentrations are important in establishing their initial zonation. In high salinity wetlands S. alterniflora populates the lower marsh and P. australis occupies the high marsh at the upland boundary.  相似文献   
154.
155.
Tetradecenyl succinic acid (TSA) is the major component of a detergent builder (C12-C14 alkenyl succinic acid), which is inherently biodegradable. 14C-TSA was dosed as a component of sewage sludge into a soil with a history of sludge amendment at final added concentrations of 1.5 and 30 mg (kg soil)-1. In addition, it was dosed to the soil in an aqueous solution to a final added concentration of 30 mg (kg soil)-1. Dose and form were found to have a pronouced effect on the mineralization kinetics. When dosed in a realistic form and concentration (i.e. 1.5 mg (kg soil)-1 as a component of sludge), TSA was mineralized at its highest rate and to its greatest extent, and the mineralization half-life was 2.4 days. When dosed at 30 mg (kg soil)-1 as a component of sludge, mineralization began immediately, and the half-life was 23 days. In contrast, when dosed at this concentration in aqueous solution, the onset of mineralization was preceded by a 13 day lag period and the mineralization half-life was 69 days. Primary biodegradation and mineralization rates of TSA were very similar. Approximately, half the radioactivity was evolved as 14CO2, while the remaining radioactivity became non-extractable, having presumably been incorporated into biomass or natural soil organic matter (humics). This study demonstrated that TSA is effectively removed from sludge-amended soils as a result of biodegradation. Furthermore, it showed the effect that dose form and concentration have on the biodegradation kinetics and the importance of dosing a chemical not only at a relevant concentration but also in the environmental form in which it enters the soil environment.  相似文献   
156.
Measurements of the organic carbon inventory, its stable isotopic composition and radiocarbon content were used to deduce vegetation history from two soil profiles in arboreal and grassy savanna ecotones in the Brazilian Pantanal. The Pantanal is a large floodplain area with grass-dominated lowlands subject to seasonal flooding, and arboreal savanna uplands which are only rarely flooded. Organic carbon inventories were lower in the grassy savanna site than in the upland arboreal savanna site, with carbon decreasing exponentially with depth from the surface in both profiles. Changes in 13C of soil organic matter (SOM) with depth differed markedly between the two sites. Differences in surface SOM 13C values reflect the change from C3 to C4 plants between the sites, as confirmed by measurements of 13C of vegetation and the soil surface along a transect between the upland closed-canopy forest and lowland grassy savanna. Changes of 13C in SOM with depth at both sites are larger than the 3–4 per mil increases expected from fractionation associated with organic matter decomposition. We interpret these as recording past changes in the relative abundance of C3 and C4 plants at these sites. Mass balances with 14C and 13C suggest that past vegetational changes from C3 to C4 plants in the grassy savanna, and in the deeper part of the arboreal savanna, occurred between 4600 and 11 400 BP, when major climatic changes were also observed in several places of the South American Continent. The change from C4 to C3, observed only in the upper part of the arboreal savanna, was much more recent (1400 BP), and was probably caused by a local change in the flooding regime.  相似文献   
157.
The surface ornamentation of ascospores ofPreussia globosa was compared in an isolate from paddy soil in Japan and a culture derived from the holotype. The ascospores of two cultures were characterized by the surface ornamentation of a single, semicircular spiral ridge. This new finding strongly suggested that the fungus should be transferred to the genusWesterdykella. Therefore, the morphological and cultural characters of the fungus were re-examined, and the new combinationWesterdykella globosa is herein proposed.  相似文献   
158.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed.  相似文献   
159.
Due to a considerable increase of anthropogenic mercury emissions, the mercury load of many soils has risen significantly, for instance in northern Europe. Understanding the fate of mercury in soils is a prerequisite for assessing the effects of ecotoxicological concern. This paper presents a method for obtaining qualitative and quantitative information about mercury translocation in and evaporation from soil. Soil lysimeters were treated with 203Hg‐labeled HgCl2 and CH3HgCl and irrigated with artificial rain. It was demonstrated that the leaching of Hg can be detected by measuring the relative y‐activity throughout the soil profile by means of Na(TI)I detectors. Furthermore, the set‐up was designed to allow detection of Hg volatilization from soil by using traps of iodized charcoal, followed by a potassium peroxodisulfate solution and measuring the γ‐activity. The amount of radioactive Hg in soil leachate was measured by a Na(Tl)I well‐type detector after upconcentration. The determination of monomethyl 203Hg was been performed by extraction procedures that isolate the methyl mercury compounds. The amount of 203Hg retained in the soil profile and the real depth of leaching were determined by stratifying the soil profile at the end of the experiment and measuring the y‐activity. With control of all pathways of Hg, the experimental design allows performance of a mass balance analysis.  相似文献   
160.
The extent of contamination of soils by toxic heavy metals not only depends on the rate of loading of the metal but also on the nature of the adsorbing surfaces, the degree of alkalinity or acidity of the soil and the presence of aqueous complexant ligands. This work reports on the role of pH on the retention of Cd, Hg, Pb and Zn by two soils and on the influence of the chloride, Cl‐, ion on the chemical speciation and retention of the four metals. Batch adsorption experiments were conducted from pH 3 to 7 in the presence of either 0.1 M LiCl or LiClO4. The results of the study showed that high concentrations of Cl ions can greatly decrease the retention of Hg and have an increasingly lesser effect on Cd, Pb and Zn retention. The effect of the Clons was directly related to the metal‐Cl formation constants. The results of computer modeling of Cd and Hg retention by goethite and humic acid fractions indicated the relative importance of aqueous vs. surface complexation on metal retention. For organic surfaces, which do not form ternary surface complexes, the presence of aqueous complexant ligands should always decrease the adsorption of the metal. For mineral surfaces, which do form ternary surface complexes, there may be increased or decreased metal retention depending on the formation constant of the aqueous metal‐ligand species, the intrinsic complexation constants for the various binary and ternary complexes of the metal and the concentration of the complexant ligand. Thus for Hg, which forms very strong aqueous species with Cl ions, reduced adsorption on goethite was predicted in the presence of 0.1 M LiCl, while enhanced adsorption was predicted for Cd and Pb. The results suggest caution in the disposal of Cl‐containing wastes onto metal‐contaminated soils. The deleterious effects of Cl ion addition would be greatest for soils with relatively high organic matter contents and low contents of hydrous ferric oxides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号