首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6960篇
  免费   447篇
  国内免费   172篇
  2023年   83篇
  2022年   104篇
  2021年   192篇
  2020年   188篇
  2019年   251篇
  2018年   219篇
  2017年   142篇
  2016年   169篇
  2015年   217篇
  2014年   358篇
  2013年   434篇
  2012年   201篇
  2011年   303篇
  2010年   243篇
  2009年   277篇
  2008年   335篇
  2007年   301篇
  2006年   320篇
  2005年   264篇
  2004年   268篇
  2003年   237篇
  2002年   232篇
  2001年   129篇
  2000年   138篇
  1999年   176篇
  1998年   143篇
  1997年   142篇
  1996年   110篇
  1995年   109篇
  1994年   110篇
  1993年   93篇
  1992年   108篇
  1991年   73篇
  1990年   65篇
  1989年   78篇
  1988年   63篇
  1987年   57篇
  1986年   62篇
  1985年   61篇
  1984年   82篇
  1983年   56篇
  1982年   63篇
  1981年   57篇
  1980年   61篇
  1979年   48篇
  1978年   36篇
  1977年   28篇
  1976年   20篇
  1973年   14篇
  1972年   14篇
排序方式: 共有7579条查询结果,搜索用时 15 毫秒
151.
Microdialysis probes were inserted into the tibialis anterior muscle and into the femoral vein of anaesthetised Sprague-Dawley rats for monitoring of reduced (GSH) and oxidized (GSSG) extracellular glutathione. The dialysates were analysed using HPLC. The levels of GSH and GSSG were high immediately after implantation in the skeletal muscle and declined to steady state levels after 90 minutes into the same range as that found in the venous dialysate. Total ischemia was induced two hours after implantation of the dialysis probe after steady state levels had been reached. The extracellular levels of GSH increased during total ischemia and had doubled at the end of the ischemic period compared to preischemic values. During the following initial 30 minutes of reperfusion the levels increased further to four-fold the preischemic levels. The levels of GSSG also increased (100%) during the initial 30 minutes of reperfusion. The extracellular GSH levels remained elevated for 1 hour of reperfusion, but the GSSG levels returned to preischemic levels. The results indicate that intermittent hypoxia or anoxia in muscle tissue through hypoperfusion or ischemia decreases intracellular GSH stores by leakage, reducing the intracellular antioxidative capacity and increasing the risk for oxidative reperfusion injury upon final normalization of tissue blood supply.  相似文献   
152.
Muscular activity converts chemical energy into useful work and metabolism restores muscle to its original state. This essay explores the organization and interactions of the regulatory system(s) which allow this energy balance to occur. The term energy balance is used in a biochemical rather than a thermodynamic sense—concerned not with deductions from the physical principles of thermodynamics, but rather with those enzymatic processes which nature evolved and which operate at remarkably fixed stoichiometry. Energy balance is a statement of conservation of energy put into biochemical observables.31P NMR spectroscopy is one of the most useful techniques for investigating these questions quantitatively under physiological conditionsin vivo. The author (1) describes the rules or principles of biochemical energy balance; (2) discusses sample results from human muscle to demonstrate its use in studying this class of questions; (3) presents a simple model of integrated cellular respiration to demonstrate its sufficiency to account for the main observations.  相似文献   
153.
A sheep antiserum against purified rabbit-heart adenylate deaminase (EC 3.5.4.6) (AMPD) was developed and validated as an immunologic probe to assess the cross-species tissue distribution of the mammalian cardiac AMPD isoform. The antiserum and the antibodies purified therefrom recognized both native and denatured rabbit-heart AMPD in immunoprecipitation and immunoblot experiments, respectively, and antibody binding did not affect native enzyme activity. The immunoprecipitation experiments further demonstrated a high antiserum titer. Immunoblot analysis of either crude rabbit-heart extracts or purified rabbit-heart AMPD revealed a major immunoreactive band with the molecular mass (81 kDa) of the soluble rabbit-heart AMPD subunit. AMPD in heart extracts from mammalian species other than rabbit (including human) was equally immunoreactive with this antiserum by quantitative immunoblot criteria. Although generally held to be in the same isoform class as heart AMPD, erythrocyte AMPD was not immunoreactive either within or across species. Nor was AMPD from most other tissues [e.g., white (gastrocnemius) muscle, lung, kidney] immunoreactive with the cardiac-directed antibody. Limited immunoreactivity was evidenced by mammalian liver, red (soleus) muscle, and brain extracts across species, indicating the presence of a minor cardiac(-like) AMPD isoform in these tissues. The results of this study characterize the tissue distribution of the cardiac AMPD isoform using a molecular approach with the first polyclonal antibodies prepared against homogeneous cardiac AMPD. This immunologic probe should prove useful at the tissue level for AMPD immunohistochemistry.  相似文献   
154.
In order to elucidate the relationship between hypertension and hypertrophy in the production of heat shock proteins, we studied the induction of the HSP72 synthesis by the heart and gracilis muscles of normo (WKY) and hypertensive (SHR) rats subjected to hyperthermia (42°C±0.5 for 15 min). Two age groups were investigated in each strain: young (2 months, with developing cardiac hypertrophy) and old (18 months, with fully developed chronic cardiac hypertrophy). The gracilis muscle never developed hypertrophy, independently of hypertension or aging. 72 kDa inducible protein was determined by Western blot analysis using a specific monoclonal antibody. We also used a commercial standard, loaded on each blot, to quantitate densitometrically the signal.The heart of young SHR responds to heat shock more than their normotensive age-matched control (298.8±24.7% vs 88.3 ±8.5%, p<0.001). This response is not maintained during aging as we did not find any significant difference between normo-and hypertensive old rats after exposure to hyperthermia (43.6±5.3% vs 65.3±10.4%).Unlike the heart, the gracilis muscle shows a basal spontaneous HSP72 synthesis in both the SHR (71.4±10.8%) and WKY (40.6±11.7%) animals. There was a significant increase in HSP72 synthesis in the gracilis muscle of young SHR with respect to their control (186.2±18.7% vs 115.8±9.9%, p<0.02) which was maintained also during aging (171.9±17.3% vs 95.2±10.5%, p<0.01).In conclusion, these data show that hypertension results in an increased synthesis of HSP72 both in cardiac and gracilis muscle in response to heat shock. This abnormal response is attenuated by aging in the heart but not in the gracilis muscle. Thus, the abnormality seems to be independent from hypertrophy and linked to genetic determination of the disease.  相似文献   
155.
The rapid accumulation of sequence data generated by the various genome sequencingprojects and the generation of expressed sequence tag databases has resulted in the need forthe development of fast and sensitive methods for the identification and characterisation oflarge numbers of gel electrophoretically separated proteins to translate the sequence data intobiological function. To achieve this goal it has been necessary to devise new approaches toprotein analysis: matrix-assisted laser desorption and electrospray mass spectrometry havebecome important protein analytical tools which are both fast and sensitive. When combinedwith a robotic system for the in-gel digestion of electrophoretically separated proteins, itbecomes possible to rapidly identify many proteins by searching databases with MS data. Thepower of this combination of techniques is demonstrated by an analysis of the proteins presentin the myofibrillar lattice of the indirect flight muscle of Drosophila melanogaster. Theproteins were separated by SDS-PAGE and in-gel proteolysis was performed bothautomatically and manually. All 16 major proteins could quickly be identified by massspectrometry. Although most of the protein components were known to be present in theflight muscle, two new components were also identified. The combination of methodsdescribed offers a means for the rapid identification of large numbers of gel separatedproteins.  相似文献   
156.
Extracellular acidosis affects both permeation and gating of the expressed rat skeletal muscle Na+ channel (μ1). Reduction of the extracellular pH produced a progressive decrease in the maximal whole-cell conductance and a depolarizing shift in the whole-cell current-voltage relationship. A smaller depolarizing shift in the steady-state inactivation curve was observed. The pK of the reduction of maximal conductance was 6.1 over the pH range studied. An upper limit estimate of the pK of the shift of the half-activation voltage was 6.1. The relative reduction in the maximal whole-cell conductance did not change with higher [Na+] o . The conductance of single fenvalerate-modified Na+ channels was reduced by extracellular protons. Although the single-channel conductance increased with higher [Na+] o , the maximal conductances at pH 7.6, 7.0 and 6.0 did not converge at [Na+] o up to 280 mm, inconsistent with a simple electrostatic effect. A model incorporating both Na+ and H+ binding in the pore and cation binding to a Gouy-Chapman surface charge provided a robust fit to the single-channel conductance data with an estimated surface charge density of 1e/439?2. Neither surface charge nor proton block alone suffices to explain the effects of extracellular acidosis on Na+ channel permeation; both effects play major roles in mediating the response to extracellular pH. Received: 14 May 1996/Revised: 19 September 1996  相似文献   
157.
Abstract: Amyloid β protein (Aβ) deposition in the cerebral arterial and capillary walls is one of the major characteristics of brains from patients with Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Vascular Aβ deposition is accompanied by degeneration of smooth muscle cells and pericytes. In this study we found that Aβ1–40 carrying the "Dutch" mutation (HCHWA-D Aβ1–40) as well as wild-type Aβ1–42 induced degeneration of cultured human brain pericytes and human leptomeningeal smooth muscle cells, whereas wild-type Aβ1–40 and HCHWA-D Aβ1–42 were inactive. Cultured brain pericytes appeared to be much more vulnerable to Aβ-induced degeneration than leptomeningeal smooth muscle cells, because in brain pericyte cultures cell viability already decreased after 2 days of exposure to HCHWA-D Aβ1–40, whereas in leptomeningeal smooth muscle cell cultures cell death was prominent only after 4–5 days. Moreover, leptomeningeal smooth muscle cell cultures were better able to recover than brain pericyte cultures after short-term treatment with HCHWA-D Aβ1–40. Degeneration of either cell type was preceded by an increased production of cellular amyloid precursor protein. Both cell death and amyloid precursor protein production could be inhibited by the amyloid-binding dye Congo red, suggesting that fibril assembly of Aβ is crucial for initiating its destructive effects. These data imply an important role for Aβ in inducing perivascular cell pathology as observed in the cerebral vasculature of patients with Alzheimer's disease or HCHWA-D.  相似文献   
158.
We are interested in understanding the molecular events associated with the growth-arrest of vascular SMCs. We constructed a subtracted cDNA library enriched in nucleotide sequences associated with quiescent SMCs. This library was screened with similarly subtracted 32P-labeled cDNAs to identify growth-arrest associated cDNA clones. Characterization of 19 of these cDNA clones revealed that 9 hybridized to mRNAs that exhibited a 2–3 fold increase in growth-arrested SMCs. In addition, two other cDNAs hybridized to a 5 Kb mRNA that was elevated approximately 10-fold in high density growth-arrested SMCs. Genomic Southern blot hybridization and DNA sequencing analysis indicated that these cDNAs encoded the same gene (LG7) and that this gene may be a member of a multigene family or that it may contain a sequence shared by other unrelated genes. Augmented expression of LG7 was associated with both high cell density and serum deprivation induced growth-arrest. LG7 mRNA expression was down-regulated when SMCs were incubated with FBS or with reagents that arrest cells in early S-phase. Additional analysis with cell cycle specific inhibitors indicated that LG7 mRNA levels were also low when cells were blocked at the G2 phase of the cell cycle but blockage at mitosis resulted in an elevated level of LG7 mRNA. We further demonstrated that the expression of LG7 was dependent on the presence of a relatively labile protein since protein synthesis inhibitors specifically blocked the expression of this mRNA but not the mRNA expression of α1(III) collagen or ferritin H-chain. Finally, we demonstrated that Bt2cAMP was able to induce mRNA expression of LG7 within 2 h, suggesting that this gene may be directly regulated via the cyclic-AMP-dependent protein kinase pathway.  相似文献   
159.
Thrombin is a potent mitogen for human vascular smooth muscle cells (HVSMC) and its enzymatic activity is required for this function. The present study demonstrates that prothrombin is also mitogenic for HVSMC due to the generation of enzymatically active thrombin which occurs upon incubation of prothrombin with the cells. Analysis by SDS-PAGE, immunoblotting, and amino acid sequencing revealed that prothrombin incubated with HVSMC undergoes limited proteolysis. Prethrombin 1 was formed through cleavage at R155-S156. Cleavage at R271-T272 generated fragment 1.2 and prethrombin 2 whilst cleavage at R284-T285 yielded truncated prothrombin 2 (prethrombin 2′). However, cleavage at R320-I321 which, during prothrombin activation produces two-chain α-thrombin, was not detectable. Studies on HVSMC-conditioned medium revealed that a similar pattern of prothrombin cleavage occurred by a cell-secreted factor(s). Amidolytic activity analysis indicated that 1–3% catalytically active thrombin-like activity was generated upon incubation of prothrombin with HVSMC-conditioned medium. By treating conditioned medium with various classes of proteinase inhibitors or hirudin, it was determined that prothrombin is cleaved by a cell-derived serine proteinase-like factor(s) at R271-S272 and by α-thrombin at R155-S156 and R284-T285. Antibodies neutralising the activity of either urokinase, tissue plasminogen activator, or factor Xa failed to alter the prothrombin cleaving activity of conditioned medium. This activity which may catalyse an alternative pathway for the generation of thrombin, was eluted from a gel filtration column as a single peak with apparent molecular mass of 30–40 kDa. © 1995 Wiley-Liss, Inc.  相似文献   
160.
Proteolytic activity of proteasome on myofibrillar structures   总被引:5,自引:0,他引:5  
The physiologic function of proteasome remains unclear. Evidence suggests a role in degradation of ubiquitin-protein conjugates, MHC antigen presentation, and some specificity of substrate within certain cell types. To explore further the properties of proteasome we have examined its effect on a well defined structure, the myofibril. We find that despite its large size (20S) proteasome is able to degrade myofibrils and intact, permeabilized muscle fibrils. The proteins degraded showed some specificity because actin, myosin and desmin were degraded faster than -actinin, troponin T and tropomyosin. Changes in ultrastructure were slow and included a general loss of structure with Z and I bands effected before the M band and costameres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号