首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   8篇
  国内免费   4篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   6篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   8篇
  2012年   63篇
  2011年   11篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   12篇
  2006年   3篇
  2005年   13篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
51.
一种报春花的新命名   总被引:1,自引:0,他引:1  
由于种加词相重,陈封怀、胡启明(1990)发表的新种Pimula exscapa Chen et C.M.Hu(holotype,S.G.Xu 3568 KUN)应是Primula exscapa Hegetschw.,FL Schw.195.1838的晚出同名,应给予重新命名.  相似文献   
52.
The uptake and binding of 59Fe, 67Ga and 239Pu complexed with citrate of transferrin (Tf) and of 125I-labelled Fe-Tf by human lymphoblasts (WI-L2 cells) have been studied. Uptake kinetics of 59Fe-Tf and [125I]-Tf point to internalization by receptor mediated endocytosis. 67Ga binding and uptake is always less. This may be explained by a lower affinity of Ga-complexes for the cell surface. Factors which influence Fe uptake have a similar effect on Ga. 239Pu uptake and binding, however, are different, especially in that Tf does not stimulate 239Pu uptake and may actually decrease it.  相似文献   
53.
The physical, chemical and optical properties of nano-scale colloids depend on their material composition, size and shape 1-5. There is a great interest in using nano-colloids for photo-thermal ablation, drug delivery and many other biomedical applications 6. Gold is particularly used because of its low toxicity 7-9. A property of metal nano-colloids is that they can have a strong surface plasmon resonance 10. The peak of the surface plasmon resonance mode depends on the structure and composition of the metal nano-colloids. Since the surface plasmon resonance mode is stimulated with light there is a need to have the peak absorbance in the near infrared where biological tissue transmissivity is maximal 11, 12.We present a method to synthesize star shaped colloidal gold, also known as star shaped nanoparticles 13-15 or nanostars 16. This method is based on a solution containing silver seeds that are used as the nucleating agent for anisotropic growth of gold colloids 17-22. Scanning electron microscopy (SEM) analysis of the resulting gold colloid showed that 70 % of the nanostructures were nanostars. The other 30 % of the particles were amorphous clusters of decahedra and rhomboids. The absorbance peak of the nanostars was detected to be in the near infrared (840 nm). Thus, our method produces gold nanostars suitable for biomedical applications, particularly for photo-thermal ablation.  相似文献   
54.
Leucine Rich Repeat Kinase 2 (LRRK2) is a 2527 amino acid member of the ROCO family of proteins, possessing a complex, multidomain structure including a GTPase domain (termed ROC, for Ras of Complex proteins) and a kinase domain1. The discovery in 2004 of mutations in LRRK2 that cause Parkinson''s disease (PD) resulted in LRRK2 being the focus of a huge volume of research into its normal function and how the protein goes awry in the disease state2,3. Initial investigations into the function of LRRK2 focused on its enzymatic activities4-6. Although a clear picture has yet to emerge of a consistent alteration in these due to mutations, data from a number of groups has highlighted the importance of the kinase activity of LRRK2 in cell death linked to mutations7,8. Recent publications have reported inhibitors targeting the kinase activity of LRRK2, providing a key experimental tool9-11. In light of these data, it is likely that the enzymatic properties of LRRK2 afford us an important window into the biology of this protein, although whether they are potential drug targets for Parkinson''s is open to debate.A number of different approaches have been used to assay the kinase activity of LRRK2. Initially, assays were carried out using epitope tagged protein overexpressed in mammalian cell lines and immunoprecipitated, with the assays carried out using this protein immobilised on agarose beads4,5,7. Subsequently, purified recombinant fragments of LRRK2 in solution have also been used, for example a GST tagged fragment purified from insect cells containing residues 970 to 2527 of LRRK212. Recently, Daniëls et al. reported the isolation of full length LRRK2 in solution from human embryonic kidney cells, however this protein is not widely available13. In contrast, the GST fusion truncated form of LRRK2 is commercially available (from Invitrogen, see table 1 for details), and provides a convenient tool for demonstrating an assay for LRRK2 kinase activity. Several different outputs for LRRK2 kinase activity have been reported. Autophosphorylation of LRRK2 itself, phosphorylation of Myelin Basic Protein (MBP) as a generic kinase substrate and phosphorylation of an artificial substrate - dubbed LRRKtide, based upon phosphorylation of threonine 558 in Moesin - have all been used, as have a series of putative physiological substrates including α-synuclein, Moesin and 4-EBP14-17. The status of these proteins as substrates for LRRK2 remains unclear, and as such the protocol described below will focus on using MBP as a generic substrate, noting the utility of this system to assay LRRK2 kinase activity directed against a range of potential substrates.  相似文献   
55.
Extensive research has focused on the neurotransmitter dopamine because of its importance in the mechanism of action of drugs of abuse (e.g. cocaine and amphetamine), the role it plays in psychiatric illnesses (e.g. schizophrenia and Attention Deficit Hyperactivity Disorder), and its involvement in degenerative disorders like Parkinson''s and Huntington''s disease. Under normal physiological conditions, dopamine is known to regulate locomotor activity, cognition, learning, emotional affect, and neuroendocrine hormone secretion. One of the largest densities of dopamine neurons is within the striatum, which can be divided in two distinct neuroanatomical regions known as the nucleus accumbens and the caudate-putamen. The objective is to illustrate a general protocol for slice fast-scan cyclic voltammetry (FSCV) within the mouse striatum. FSCV is a well-defined electrochemical technique providing the opportunity to measure dopamine release and uptake in real time in discrete brain regions. Carbon fiber microelectrodes (diameter of ~ 7 μm) are used in FSCV to detect dopamine oxidation. The analytical advantage of using FSCV to detect dopamine is its enhanced temporal resolution of 100 milliseconds and spatial resolution of less than ten microns, providing complementary information to in vivo microdialysis.  相似文献   
56.
目的:研究活化/抑制cD59分子对T细胞增殖的影响。方法:Jurkat细胞分别电转入pSUPER-siCD59质粒及用CD59活化抗体刺激。激光共聚焦显微镜下观察细胞的电转情况及cD59分子在细胞膜上的分布及表达;MTT比色法检测细胞的增殖。Westernblot检测CD59分子表达及T细胞活化相关蛋白ZAP70磷酸化水平。结果:激光共聚焦显微镜下可见电转染细胞表达绿色荧光,转染效率约为40%。转染pSUPER-siCD59质粒后CD59荧光强度强度降低,CD59分子均匀分布于细胞膜与正常Jurkat细胞分布一致。抗体活化后CD59在细胞膜成簇状分布。抗体活后细胞增殖速率和磷酸化ZAP70的蛋白表达水平均高于正常组(P〈0.05),而细胞电转质粒后则恰恰相反。结论:CD59通过与信号转导分子的相互作用促进T细胞活化增殖。  相似文献   
57.
目的 构建人matureCD59-mFC—pBOS真核表达载体,转染COSa细胞进行瞬时表达,对表达产物进行鉴定及纯化。方法在人Jurkat细胞中提取细胞总RNA,运用RT—PCR方法扩增matureCD59基因,定向克隆入带有mFC标签的真核表达载体pBOS中,大提质粒后通过电转仪转染COSa细胞,ELISA及特异抗体检测CD59的表达,并大量收集细胞上清用ProteinA进行纯化。结果构建r重组载体matureCD59.mFC—pBOS,瞬时转染COSa细胞,初步纯化得到天然表达的CD59抗原。结论带有mFC标签的CD59天然抗原的得到为制备抗人CD59单克隆抗体开辟了一条新的途径。  相似文献   
58.
André MJ 《Bio Systems》2011,103(2):239-251
In closed systems, the O2 compensation point (ΓO) was previously defined as the upper limit of O2 level, at a given CO2 level, above which plants cannot have positive carbon balance and survive. Studies with 18O2 measure the actual O2 uptake by photorespiration due to the dual function of Rubisco, the enzyme that fixes CO2 and takes O2 as an alternative substrate. One-step modelling of CO2 and O2 uptakes allows calculating a plant specificity factor (Sp) as the sum of the biochemical specificity of Rubisco and a biophysical specificity, function of the resistance to CO2 transfer from the atmosphere to Rubisco. The crossing points (Cx, Ox) are defined as CO2 and O2 concentrations for which O2 and CO2 uptakes are equal. It is observed that: (1) under the preindustrial atmosphere, photorespiration of C3 plants uses as much photochemical energy as photosynthesis, i.e. the Cx and Ox are equal or near the CO2 and O2 concentrations of that epoch; (2) contrarily to ΓC, a ΓO does not practically limit the plant growth, i.e. the plant net CO2 balance is positive up to very high O2 levels; (3) however, in a closed biosystem, ΓO exists; it is not the limit of plant growth, but the equilibrium point between photosynthesis and the opposite respiratory processes; (4) a reciprocal relationship exists between ΓO and ΓC, as unique functions of the respective CO2 and O2 concentrations and of Sp, this invalidates some results showing two different functions for ΓO and ΓC, and, consequently, the associated analyses related to greenhouse effects in the past; (5) the pre-industrial atmosphere levels of O2 and CO2 are the ΓO and ΓC of the global bio-system. They are equal to or near the values of Cx and Ox of C3 plants, the majority of land plants in preindustrial period. We assume that the crossing points represent favourable feedback conditions for the biosphere-atmosphere equilibrium and could result from co-evolution of plants-atmosphere-climate. We suggest that the evolution of Rubisco and associated pathways is directed by an optimisation between photosynthesis and photorespiration.  相似文献   
59.
Membrane proteins (MPs) play a critical role in many physiological processes such as pumping specific molecules across the otherwise impermeable membrane bilayer that surrounds all cells and organelles. Alterations in the function of MPs result in many human diseases and disorders; thus, an intricate understanding of their structures remains a critical objective for biological research. However, structure determination of MPs remains a significant challenge often stemming from their hydrophobicity. MPs have substantial hydrophobic regions embedded within the bilayer. Detergents are frequently used to solubilize these proteins from the bilayer generating a protein-detergent micelle that can then be manipulated in a similar manner as soluble proteins. Traditionally, crystallization trials proceed using a protein-detergent mixture, but they often resist crystallization or produce crystals of poor quality. These problems arise due to the detergent's inability to adequately mimic the bilayer resulting in poor stability and heterogeneity. In addition, the detergent shields the hydrophobic surface of the MP reducing the surface area available for crystal contacts. To circumvent these drawbacks MPs can be crystallized in lipidic media, which more closely simulates their endogenous environment, and has recently become a de novo technique for MP crystallization. Lipidic cubic phase (LCP) is a three-dimensional lipid bilayer penetrated by an interconnected system of aqueous channels. Although monoolein is the lipid of choice, related lipids such as monopalmitolein and monovaccenin have also been used to make LCP. MPs are incorporated into the LCP where they diffuse in three dimensions and feed crystal nuclei. A great advantage of the LCP is that the protein remains in a more native environment, but the method has a number of technical disadvantages including high viscosity (requiring specialized apparatuses) and difficulties in crystal visualization and manipulation. Because of these technical difficulties, we utilized another lipidic medium for crystallization-bicelles (Figure 1). Bicelles are lipid/amphiphile mixtures formed by blending a phosphatidylcholine lipid (DMPC) with an amphiphile (CHAPSO) or a short-chain lipid (DHPC). Within each bicelle disc, the lipid molecules generate a bilayer while the amphiphile molecules line the apolar edges providing beneficial properties of both bilayers and detergents. Importantly, below their transition temperature, protein-bicelle mixtures have a reduced viscosity and are manipulated in a similar manner as detergent-solubilized MPs, making bicelles compatible with crystallization robots. Bicelles have been successfully used to crystallize several membrane proteins (Table 1). This growing collection of proteins demonstrates the versatility of bicelles for crystallizing both alpha helical and beta sheet MPs from prokaryotic and eukaryotic sources. Because of these successes and the simplicity of high-throughput implementation, bicelles should be part of every membrane protein crystallographer's arsenal. In this video, we describe the bicelle methodology and provide a step-by-step protocol for setting up high-throughput crystallization trials of purified MPs using standard robotics.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号