首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2236篇
  免费   203篇
  国内免费   47篇
  2024年   2篇
  2023年   31篇
  2022年   32篇
  2021年   53篇
  2020年   60篇
  2019年   74篇
  2018年   86篇
  2017年   69篇
  2016年   67篇
  2015年   83篇
  2014年   106篇
  2013年   126篇
  2012年   75篇
  2011年   95篇
  2010年   84篇
  2009年   109篇
  2008年   118篇
  2007年   105篇
  2006年   118篇
  2005年   86篇
  2004年   82篇
  2003年   73篇
  2002年   73篇
  2001年   70篇
  2000年   60篇
  1999年   61篇
  1998年   54篇
  1997年   50篇
  1996年   34篇
  1995年   21篇
  1994年   28篇
  1993年   32篇
  1992年   20篇
  1991年   21篇
  1990年   19篇
  1989年   20篇
  1988年   6篇
  1987年   21篇
  1986年   17篇
  1985年   17篇
  1984年   18篇
  1983年   19篇
  1982年   22篇
  1981年   15篇
  1980年   12篇
  1979年   15篇
  1978年   9篇
  1977年   8篇
  1976年   6篇
  1975年   2篇
排序方式: 共有2486条查询结果,搜索用时 140 毫秒
31.
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures – apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.  相似文献   
32.
The distribution and down-regulation of the muscarinic acetylcholine receptor (mAChR) were studied in dissociated cells from right (RCC) and left (LCC) cerebral cortex. For this purpose [3H]quinuclidinyl benzilate (QNB) and [3H]pirenzepine (Pz), two muscarinic antagonists, were used. The mAChR binding sites detected with [3H]QNB were asymmetrically distributed between the two hemispheres, the majority being found in the RCC. Asymmetry was also evident in the distribution of the mAChR subtypes (M1 and M2) detected with [3H]Pz. Under basal conditions the RCC had roughly 50% more M1 subtype than the LCC. The pharmacological and kinetic parameters were similar for both antagonists in RCC and LCC, indicating that the observed lateralization was due to a different density of the receptor rather than to different kinetics of binding of the two radioligands. After sustained stimulation with the agonist carbamoylcholine, the receptor sites detected with [3H]Pz, i.e. the M1 subtype of mAChR, decreased at a higher rate in the RCC (44%) than in the LCC (25% of controls), demonstrating that the down-regulation process is more active in the right than in the left cortex, and thus implying that there is better coupling between the stimulated mAChR and its effector system in the former.  相似文献   
33.
Under temperature sex determination (TSD), sex is determined by temperature during embryonic development. Depending on ecological and physiological traits and plasticity, TSD species may face demographic collapse due to climate change. In this context, asymmetry in bilateral organisms can be used as a proxy for developmental instability and, therefore, deviations from optimal incubation conditions. Using Tarentola mauritanica gecko as a model, this study aimed first to confirm TSD, its pattern and pivotal temperature, and second to assess the local adaptation of TSD and variation of asymmetry patterns across four populations under different thermal regimes. Eggs were incubated at different temperatures, and hatchlings were sexed and measured. The number of lamellae was counted in adults and hatchlings. Results were compatible with a TSD pattern with males generated at low and females at high incubation temperatures. Estimated pivotal temperature coincided with the temperature producing lower embryonic mortality, evidencing selection towards balanced sex ratios. The temperature of oviposition was conservatively selected by gravid females. Asymmetry patterns found were likely related to nest temperature fluctuations. Overall, the rigidity of TSD may compromise reproductive success, and demographic stability in this species in case thermal nest choice becomes constrained by climate change.  相似文献   
34.
This study aimed to test the performance of 3D digitizer, CT scanner, and surface scanner in detecting cranial fluctuating asymmetry. Sets of 32 landmarks (6 in the midline and 13 bilateral) were acquired from 14 archeological crania using a 3D digitizer, and from 3D models generated from a CT scanner and surface scanner using Viewbox 4. Levels of shape variation were analyzed in MorphoJ using Procrustes analysis of variance and Principal component analysis. Intra-observer error accounted for 1.7%, 1.8%, and 4.5% of total shape variation for 3D digitizer, CT scanner, and surface scanner respectively. Fluctuating asymmetry accounted for 15%–16% of total shape variation. Variation between techniques accounted for 18% of total shape variation. We found a higher level of missing landmarks in our surface scan data than for both 3D digitizer and CT scanner data, and both 3D model-based techniques sometimes obscured taphonomic damage. All three 3D techniques are appropriate for measuring cranial fluctuating asymmetry. We advise against combining data collected with different techniques.  相似文献   
35.
Developing organisms are often exposed to fluctuating environments that destabilize tissue-scale processes and induce abnormal phenotypes. This might be common in species that lay eggs in the external environment and with little parental care, such as many reptiles. In turtles, morphological development has provided striking examples of abnormal phenotypic patterns, though the influence of the environment remains unclear. To this end, we compared fluctuating asymmetry, as a proxy for developmental instability, in turtle hatchlings incubated in controlled laboratory and unstable natural conditions. Wild and laboratory hatchlings featured similar proportions of supernumerary scales (scutes) on the dorsal shell (carapace). Such abnormal scutes likely elevated shape asymmetry, which was highest in natural nests. Moreover, we tested the hypothesis that hot and dry environments cause abnormal scute formation by subjecting eggs to a range of hydric and thermal laboratory incubation regimes. Shape asymmetry was similar in hatchlings incubated at five constant temperatures (26–30°C). A hot (30°C) and severely Dry substrate yielded smaller hatchlings but scutes were not overtly affected. Our study suggests that changing nest environments contribute to fluctuating asymmetry in egg-laying reptiles, while clarifying the conditions at which turtle shell development remains buffered from the external environment.  相似文献   
36.
37.
金银花作为我国重要的中药材,具有消炎、抗菌、抗病毒、抗氧化、防癌等多种功效。随着金银花市场供需矛盾日益加剧,通过分子标记辅助选择育种方法来培育高产优质品种势在必行。通过NCBI的Blast工具扫描金银花蛋白组数据发掘花形候选基因,并执行候选基因的亲缘关系分析、结构域分析、表达模式分析、理化性质分析、蛋白质结构预测等一系列生物信息学分析。依据拟南芥调控花形的ABE类基因,通过NCBI-Blast工具扫描金银花氨基酸序列,筛选出包含MADS结构域的8个调控花形的金银花候选基因。经LjaFGD表达模式分析发现,金银花的花中GWHGAAZE016592和GWHGAAZE014905表达量显著高于其他部位,可能正向调控金银花花形。GWHGAAZE014905是一个包含MADS结构域的调控花器官发育的B类基因;GWHGAAZE016592是AP3同源基因。生物信息学分析发现,GWHGAAZE016592和GWHGAAZE014905均是稳定的亲水蛋白,属于非分泌蛋白,包括Motif1、Motif3、Motif4、Motif2、Motif6和Motif5,蛋白质三级结构模板为6byy.2.A和4ox0.2.C。GWHGAAZE014905被定位到细胞核上,而GWHGAAZE016592被定位到叶绿体上,且包含1个位于151~173 bp的跨膜螺旋区域,属于膜蛋白。研究结果为分子标记辅助选择方式培育道地高产优质金银花品种提供了基因资源和分子标记。  相似文献   
38.
《遗传学报》2023,50(2):63-76
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six “core” proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left–right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal–distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.  相似文献   
39.
Most previous studies of evolutionary modification of form in plants have focused primarily on individual organs or flowers. Few have investigated the role of evolutionary changes in timing or position at the level of whole plant ontogeny. This study compares ontogenies of the primary shoots of two subspecies of Cucurbita argyrosperma, one a cultivar and the other its wild progenitor. Differences in flowering times between these subspecies suggested that the cultivar may have evolved from the wild subspecies via heterochronic processes leading to paedomorphosis. Analyses showed that both subspecies are similar in vegetative architecture and rates of leaf production. Earlier flowering in the cultivar, both in terms of position and absolute time, appears to have arisen through progenesis. Initial observations of leaf blade morphology led to the hypothesis that paedomorphosis and gigantism also may have been involved in the evolution of leaf blade shape in the cultivar: all leaves of the cultivar are larger and visually similar in shape to early leaves of the wild subspecies. However, quantitative analysis revealed that leaves of the cultivar are neither geometrically, nor solely allometrically larger versions of early leaves of the progenitor. Leaf shape in the cultivar exhibits novel features as well as effects of allometry shared with the progenitor, hence a simple hypothesis of paedomorphic evolution of leaf shape is not supported.  相似文献   
40.
It is often proposed that the morphometric shape of animals often evolves as a correlated response to selection on life-history traits such as whole-body growth and differentiation rates. However, there exists little empirical information on whether selection on rates of growth or differentiation in animals could generate correlated response in morphometric shape beyond that owing to the correlation between these rates and body size. In this study genetic correlations were estimated among growth rate, differentiation rate, and body-size-adjusted head width in the green tree frog, Hyla cinerea. Head width was adjusted for size by using the residuals from log-log regressions of head width on snout-vent length. Size-adjusted head width at metamorphosis was positively genetically correlated with larval period length. Thus, size-independent shape might evolve as a correlated response to selection on a larval life-history trait. Larval growth rate was not significantly genetically correlated with size-adjusted head width. An additional morphometric trait, size-adjusted tibiofibula length, had a nonnormal distribution of breeding values, and so was not included in the analysis of genetic correlations (offspring from one sire had unusually short legs). This result is interesting because, although using genetic covariance matrices to predict long-term multivariate response to selection depends on the assumption that all loci follow a multivariate Gaussian distribution of allelic effects, few data are available on the distribution of breeding values for traits in wild populations. Size at metamorphosis was positively genetically correlated with larval period and larval growth rate. Quickly growing larvae that delay metamorphosis therefore emerge at a large size. The genetic correlation between larval growth rate and juvenile (postmetamorphic) growth rate was near zero. Growth rate may therefore be an example of a fitness-related trait that is free to evolve in one stage of a complex life cycle without pleiotropic constraints on the same trait expressed in the other stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号