首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20023篇
  免费   1258篇
  国内免费   839篇
  2023年   335篇
  2022年   413篇
  2021年   633篇
  2020年   600篇
  2019年   712篇
  2018年   774篇
  2017年   577篇
  2016年   573篇
  2015年   676篇
  2014年   931篇
  2013年   1522篇
  2012年   653篇
  2011年   834篇
  2010年   681篇
  2009年   769篇
  2008年   790篇
  2007年   905篇
  2006年   806篇
  2005年   755篇
  2004年   560篇
  2003年   544篇
  2002年   494篇
  2001年   378篇
  2000年   323篇
  1999年   331篇
  1998年   343篇
  1997年   329篇
  1996年   313篇
  1995年   301篇
  1994年   298篇
  1993年   274篇
  1992年   303篇
  1991年   239篇
  1990年   228篇
  1989年   226篇
  1988年   200篇
  1987年   206篇
  1986年   192篇
  1985年   270篇
  1984年   340篇
  1983年   221篇
  1982年   255篇
  1981年   215篇
  1980年   159篇
  1979年   176篇
  1978年   121篇
  1977年   79篇
  1976年   79篇
  1975年   46篇
  1974年   43篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
971.
A new bis heterocycle comprising both bioactive 2-aminopyrimidine and thiazolidin-4-one nuclei namely 3-(4′-(4″-fluorophenyl)-6′-phenylpyrimidin-2′-yl)-2-phenylthiazolidin-4-one 3 was synthesized, characterized with the help of melting point, elemental analysis, FT-IR, MS, one-dimensional NMR (1H, 13C) spectra and we evaluated the chemopreventive potential of 3-(4′-(4″-fluorophenyl)-6′-phenylpyrimidin-2′-yl)-2-phenylthiazolidin-4-one based on in vivo inhibitory effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch carcinogenesis. Administration of 3 effectively suppressed oral carcinogenesis initiated with DMBA as revealed by the reduced incidence of neoplasms. Lipid peroxidation, glutathione (GSH) content, and the activities of glutathione peroxidase (GPx), glutathione S-transferase (GST) were used to biomonitor the chemopreventive potential of 3. Lipid peroxidation was found to be significantly decreased, whereas GSH, GPx, GST, and GGT were elevated in the oral mucosa of tumor-bearing animals. Our data suggest that 3 may exert its chemopreventive effects in the oral mucosa by modulation of lipid peroxidation and enhancing the levels of GSH, GPx, and GST.  相似文献   
972.
The in vitro antioxidant effects of novel N-substituted indole-3-carboxamides (I3CDs) 1-10 on rat liver microsomal NADPH-dependent lipid peroxidation (LP) levels and their free radicals scavenging properties were determined by the inhibition of superoxide anion formation (SOD). Among the synthesized compounds, 4, 5, 8 and 9 significantly inhibited SOD with an inhibition range at 84–100% at 10? 3 M concentration. The presence of halo substituents both ortho- and para- positions of these compounds resulted 100% inhibition of SOD. Comparison the activity results of halogenated and non-halogenated derivatives suggested that the halogenated compounds are more active than the non-halogenated compounds. On the other hand, the introduction of a para fluoro benzyl in the 1-position of indole (compounds 7, 8) has more impact on the SOD inhibition when the benzamide ring was mono halogenated. However, none of other compounds had a significant inhibitory effects on the level of lipid peroxidation.  相似文献   
973.
The antioxidant role of novel N-substituted indole-2-carboxamides (I2CDs) was investigated for their inhibitory effects on superoxide anion (O2? ) and lipid peroxidation (LP). Among the synthesized I2CDs, 3, 4, 6, 8 and 9 significantly inhibited O2· ? with an inhibition range at 70–98%. Examination of substituent effects on activity showed that both the ortho- and para-positions of the benzamide residue needs to be dichlorinated in order to get a maximum inhibitory effect on superoxide anion. In general, halogenated derivatives were found more active then the non-halogenated ones. However, none of the I2CDs had a significant inhibitory effects on the level of lipid peroxidation; only compounds 7 and 10 moderately decreased LP levels by over 50% at 10? 3 M concentrations.  相似文献   
974.
Oxidative stress has been implicated in the development of many neurodegenerative diseases and also responsible from aging and some cancer types. Indolic compounds are a broad family of substances present in microorganisms, plants and animals. They are mainly related to tryptophan metabolism, and present particular properties that depend on their respective chemical structures. Due to free radical scavenger and antioxidant properties of indolic derivatives such as indolinic nitroxides and melatonin, a series of 2-phenyl indole derivatives were prepared and their in vitro effects on rat liver lipid peroxidation levels, superoxide formation and DPPH stable radical scavenging activities were determined against melatonin, BHT and α-tocopherol. The compounds significantly inhibited (72–98%) lipid peroxidation at 10? 3 M. These values were similar to that observed with BHT (88%). Possible structure–activity relationships of the compounds were discussed.  相似文献   
975.
976.
Accurate cancer biomarkers are needed for early detection, disease classification, prediction of therapeutic response and monitoring treatment. While there appears to be no shortage of candidate biomarker proteins, a major bottleneck in the biomarker pipeline continues to be their verification by enzyme linked immunosorbent assays. Multiple reaction monitoring (MRM), also known as selected reaction monitoring, is a targeted mass spectrometry approach to protein quantitation and is emerging to bridge the gap between biomarker discovery and clinical validation. Highly multiplexed MRM assays are readily configured and enable simultaneous verification of large numbers of candidates facilitating the development of biomarker panels which can increase specificity. This review focuses on recent applications of MRM to the analysis of plasma and serum from cancer patients for biomarker verification. The current status of this approach is discussed along with future directions for targeted mass spectrometry in clinical biomarker validation.  相似文献   
977.
In this review article, the main recent advancements in the field of proteomics and metabolomics and their application in cancer research are described. In the second part of the review the main metabolic alterations observed in cancer cells are thoroughly dissected, especially those involving anabolic pathways and NADPH-generating pathways, which indirectly affect anabolic reactions, other than the maintenance of the redox poise. Alterations to mitochondrial pathways and thereby deriving oncometabolites are also detailed. The third section of the review is a discussion of how and to what extent (mutations to) tumor suppressors and oncogenes end up influencing cancer cell metabolism and cell fate, either promoting survival and proliferation or autophagy and apoptosis. In the last section of the review, an overview is provided of therapeutic strategies that make use of metabolic reprogramming approaches.  相似文献   
978.
The interaction between cyproheptadine hydrochloride (CYP) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy (FT‐IR) and molecular modeling at a physiological pH (7.40). Fluorescence of HSA was quenched remarkably by CYP and the quenching mechanism was considered as static quenching since it formed a complex. The association constants Ka and number of binding sites n were calculated at different temperatures. According to Förster's theory of non‐radiation energy transfer, the distance r between donor (human serum albumin) and acceptor (cyproheptadine hydrochloride) was obtained. The effect of common ions on the binding constant was also investigated. The effect of CYP on the conformation of HSA was analyzed using FT‐IR, synchronous fluorescence spectroscopy and 3D fluorescence spectra. The thermodynamic parameters ΔH and ΔS were calculated to be ?14.37 kJ mol?1 and 38.03 J mol?1 K?1, respectively, which suggested that hydrophobic forces played a major role in stabilizing the HSA‐CYP complex. In addition, examination of molecular modeling indicated that CYP could bind to site I of HSA and that hydrophobic interaction was the major acting force, which was in agreement with binding mode studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
979.
Three novel p‐hydroxybenzoic acid derivatives (HSOP, HSOX, HSCP) were synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfamonomethoxine sodium, sulfamethoxazole and sulfachloropyridazine sodium) and characterized by elemental analysis, HNMR and MS. Interactions between derivatives and bovine serum albumin (BSA) were studied by fluorescence quenching spectra, UV–vis absorption spectra and time‐resolved fluorescence spectra. Based on fluorescence quenching calculation and Förster's non‐radioactive energy transfer theory, the values of the binding constants, basic thermodynamic parameters and binding distances were obtained. Experimental results indicated that the three derivatives had a strong ability to quench fluorescence from BSA and that the binding reactions of the derivatives with BSA were a static quenching process. Thermodynamic parameters showed that binding reactions were spontaneous and exothermic and hydrogen bond and van der Waals force were predominant intermolecular forces between the derivatives and BSA. Synchronous fluorescence spectra suggested that HSOX and HSCP had little effect on the microenvironment and conformation of BSA in the binding reactions but the microenvironments around tyrosine residues were disturbed and polarity around tyrosine residues increased in the presence of HSOP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
980.
The interaction between strictosamide (STM) and human serum albumin (HSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling under physiological pH 7.4. STM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding site number n and apparent binding constant Ka were determined at different temperatures by fluorescence quenching. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated as ?3.01 kJ/mol and 77.75 J/mol per K, respectively, which suggested that the hydrophobic force played major roles in stabilizing the HSA–STM complex. The distance r between donor and acceptor was obtained to be 4.10 nm according to Förster's theory. After the addition of STM, the synchronous fluorescence and three‐dimensional fluorescence spectral results showed that the hydrophobicity of amino acid residues increased and the circular dichroism spectral results showed that the α‐helix content of HSA decreased (from 61.48% to 57.73%). These revealed that the microenvironment and conformation of HSA were changed in the binding reaction. Furthermore, the study of molecular modeling indicated that STM could bind to site I of HSA and the hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号