首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9200篇
  免费   1302篇
  国内免费   5695篇
  2024年   32篇
  2023年   403篇
  2022年   472篇
  2021年   523篇
  2020年   646篇
  2019年   757篇
  2018年   707篇
  2017年   705篇
  2016年   675篇
  2015年   640篇
  2014年   641篇
  2013年   772篇
  2012年   638篇
  2011年   597篇
  2010年   512篇
  2009年   696篇
  2008年   609篇
  2007年   701篇
  2006年   582篇
  2005年   539篇
  2004年   469篇
  2003年   461篇
  2002年   383篇
  2001年   340篇
  2000年   304篇
  1999年   309篇
  1998年   237篇
  1997年   222篇
  1996年   219篇
  1995年   199篇
  1994年   183篇
  1993年   132篇
  1992年   124篇
  1991年   110篇
  1990年   110篇
  1989年   112篇
  1988年   82篇
  1987年   60篇
  1986年   55篇
  1985年   34篇
  1984年   36篇
  1983年   13篇
  1982年   50篇
  1981年   22篇
  1980年   26篇
  1979年   21篇
  1978年   7篇
  1974年   5篇
  1973年   6篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
21.
We evaluated the performance of Coptera haywardi (Ogloblin) (Diapriidae) and Pachycrepoideus vindemiae (Rondani) (Pteromalidae), both hymenopteran pupal parasitoids of Anastrepha spp. (Diptera: Tephritidae). Performance was studied by manipulating the following environmental conditions in the laboratory: (1) soil type, (2) soil moisture content, (3) soil compaction, and (4) depth at which pupae were buried in the soil. There were two experiments: in the first, exposure time of pupae was held constant and in the second, it varied. In the first experiment, C. haywardi was significantly more effective than P. vindemiae in parasitizing fly pupae. With exposure time held constant (36 h), only soil type and pupal burial depth were significantly related to parasitism rates. While P. vindemiae only parasitized pupae located on the soil surface, C. haywardi attacked pupae that were buried up to 5 cm deep, performing better in clayey than in loamy soil. In the second experiment, exposure time (24, 36, 48, and 72 h) had no significant effect on parasitism rates, but soil type did. P. vindemiae again only attacked pupae on the soil surface while C. haywardi was also able to parasitize pupae that were buried up to 5 cm deep. We conclude that C. haywardi represents a viable candidate to replace the environmentally unfriendly P. vindemiae in augmentative biological control programs against fruit flies.  相似文献   
22.
The use of plantations to manage extensive tracks of deforested lands in the tropics is a conservation strategy that has recently received considerable attention. Plantation trees can promote seed dispersal by attracting dispersers and creating favorable site conditions, leading to increased germination and establishment of indigenous trees. Subsequently, plantation trees can be harvested for profit or left to senesce, leaving a native tree community. We evaluated the effect of vine, grass, and shrub cutting (weeding) over a 3‐year period on regeneration of indigenous trees subsequent to the removal of plantation softwoods in Kibale National Park, Uganda. Counter to what would be expected if weeding released trees from competition, we found no difference in the total number of stems or in the stems greater than 10 cm diameter at breast height between control and weeded plots; there were more stems greater than 1 cm diameter at breast height in the control plots. For species found in both control and weeded plots, the maximum size of individuals did not differ. At the end of the study, 61 species were found in the control plots and 43 species were found in the weeded plots, and in both types of plots the three most abundant species were the same. The number of species and stems classified as early or middle successional species did not differ between weeded and control plots. The fact that weeding did not promote regeneration of indigenous trees after the removal of plantation trees illustrates the importance of evaluating and field‐testing potential management options.  相似文献   
23.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.  相似文献   
24.
This paper deals with the complex issue of reversing long‐term improvements of fertility in soils derived from heathlands and acidic grasslands using sulfur‐based amendments. The experiment was conducted on a former heathland and acid grassland in the U.K. that was heavily fertilized and limed with rock phosphate, chalk, and marl. The experimental work had three aims. First, to determine whether sulfurous soil amendments are able to lower pH to a level suitable for heathland and acidic grassland re‐creation (approximately 3 pH units). Second, to determine what effect the soil amendments have on the available pool of some basic cations and some potentially toxic acidic cations that may affect the plant community. Third, to determine whether the addition of Fe to the soil system would sequester PO4? ions that might be liberated from rock phosphate by the experimental treatments. The application of S0 and Fe(II)SO4? to the soil was able to reduce pH. However, only the highest S0 treatment (2,000 kg/ha S) lowered pH sufficiently for heathland restoration purposes but effectively so. Where pH was lowered, basic cations were lost from the exchangeable pool and replaced by acidic cations. Where Fe was added to the soil, there was no evidence of PO4? sequestration from soil test data (Olsen P), but sequestration was apparent because of lower foliar P in the grass sward. The ability of the forb Rumex acetosella to apparently detoxify Al3+, prevalent in acidified soils, appeared to give it a competitive advantage over other less tolerant species. We would anticipate further changes in plant community structure through time, driven by Al3+ toxicity, leading to the competitive exclusion of less tolerant species. This, we suggest, is a key abiotic driver in the restoration of biotic (acidic plant) communities.  相似文献   
25.
Emergence and growth of barley was severely decreased by short periods (less than 24 hours) of pre-emergence waterlogging at 20°C. The extent of damage depended on a combination of duration of waterlogging, soil water potential and aggregate size. Potentials of less than—4kPa prevented loss of plants developing in aggregates of less than 2 mm diameter after a transitory period of waterlogging although some shoot and root damage occurred. By comparison seeds growing in soil consisting of aggregates greater than 2 mm in diameter were not damaged by transitory waterlogging even when drainage only occurred at−0.8kPa. The severity of damage increased with the period of waterlogging. A criterion obtained as the product of mean size grade and water potential gave a single value (−4NM−1) below which emergence was satisfactory. Waterlogging halfway through germination gave more severe damage than near sowing date or near emergence.  相似文献   
26.
The fate of15N labeled nitrogen applied to mature citrus trees   总被引:1,自引:0,他引:1  
Summary The efficiency and balance of nitrogen from one year's application was studied in a long-term fertigation experiment. Enriched nitrogen fertilizer, K15NO3, was applied to a 22-year-old Shamouti orange tree with a history of high N applications (N3) and to an N-starved tree (N1). The distribution of N in the different parts of the trees and in the soil was determined after the experimental trees were excavated. Similar total recovery of the labeled fertilizer N was found in the trees and soil in both treatments (N1−61.7% N3−56%). However, the distribution between tree and soil was different. The amount of recovered residual fertilizer in the soil was much larger in the N3 treatment than in N1. The highest percentage of fertilizer N was found in the new organs,i.e. fruits, twigs and leaves. The roots and branches took up only 6–14% from the labeled fertilizer. Only 20.9% of the leaf N and 23.4% of the fruit N in the N3 tree originated in the labeled fertilizer, indicating translocation of N from older parts of the tree to new growth. Evidence was found of storage of N in the wooded branches, while the roots contained a surprisingly small part of labeled fertilizer. Contribution 1599E.  相似文献   
27.
The N2O flux from the surface of grass-covered pots was only significant following grass maturing. Removal of the above-ground plant material resulted in an immediate and long-lasting increase in N2O production in the soil. The results suggest that easily available organic matter from the roots stimulates the denitrification when the plants are damaged. Grass cutting might therefore result in a marked nitrogen loss through denitrification. The quantitative effect was equal in soil with and without succinate added. The size of the anaerobic zone around the roots is therefore sufficient to allow for denitrification activity mediated by increased organic matter availability because of plant cutting.  相似文献   
28.
For three acid soils from Santa Catarina, Brazil, lime application and time of incubation with lime had little effect on the adsorption of added phosphorus. In two soils with high contents of exchangeable aluminium, solution P and isotopically exchangeable P were decreased by incubating with lime for 1 month: phosphorus was probably adsorbing on freshly precipitated aluminium hydrous oxides. In one soil with less exchangeable aluminium, P in solution was increased by liming. After 23 months lime increased solution and exchangeable P possibly due to crystallization of aluminium hydrous oxides reducing the number of sites for P adsorption. All these changes were however small. In a pot experiment, lime and phosphorus markedly increased barley shoot and root dry matter and P uptake. Although liming reduced P availability measured by solution P, isotopically exchangeable P and resin extractable P, it increased phosphorus uptake by reducing aluminium toxicity and promoting better root growth. The soil aluminium saturation was reduced by liming, but the concentration of aluminium in roots changed only slightly. The roots accumulated aluminium without apparently being damaged.  相似文献   
29.
The effects of ethylene oxide (EtO) on survival of soil microflora and on selected chemical properties of a sandy-loam soil were examined. Soil sterilization was achieved after 8 hours exposure to EtO. Ethylene oxide treatment increased soil pH and organic matter content. Extractable Mn and Fe slightly increased whereas P content decreased. Total N was not affected by the treatment.  相似文献   
30.
Summary The alder has a perennial nodule cluster. The nodule amount on the roots increases with tree age. The N2-fixing activity of nodules decreases with nodule age. Purple coloured soils with various soil pHs and CaCO3 contents are, in the main, the ones which influence nodulation and N2-fixing. Higher N2-fixing capacity existed in the neutral and low calcium soils. High calcium soils and acid soils can restrain nodulation and the N2-fixing rate significantly. On the slope, where calcarous light loams are found, the annual nitrogen fixation capacity of alder and cypress mixed plantations, less than 10 years old, is 16 or 17 kg/ha yr, but in the valley, a pure alder plantation can reach 40 kg/ha yr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号