首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21400篇
  免费   2070篇
  国内免费   1167篇
  2024年   27篇
  2023年   388篇
  2022年   277篇
  2021年   778篇
  2020年   804篇
  2019年   826篇
  2018年   742篇
  2017年   711篇
  2016年   709篇
  2015年   847篇
  2014年   998篇
  2013年   1276篇
  2012年   950篇
  2011年   845篇
  2010年   799篇
  2009年   1030篇
  2008年   1027篇
  2007年   1119篇
  2006年   945篇
  2005年   919篇
  2004年   832篇
  2003年   822篇
  2002年   667篇
  2001年   601篇
  2000年   540篇
  1999年   488篇
  1998年   442篇
  1997年   403篇
  1996年   388篇
  1995年   348篇
  1994年   335篇
  1993年   328篇
  1992年   279篇
  1991年   248篇
  1990年   225篇
  1989年   208篇
  1988年   179篇
  1987年   158篇
  1986年   129篇
  1985年   175篇
  1984年   186篇
  1983年   100篇
  1982年   108篇
  1981年   117篇
  1980年   87篇
  1979年   62篇
  1978年   48篇
  1977年   46篇
  1976年   39篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
51.
Human migration is nonrandom. In small scale societies of the past, and in the modern world, people tend to move to wealthier, safer, and more just societies from poorer, more violent, less just societies. If immigrants are assimilated, such nonrandom migration can increase the occurrence of culturally transmitted beliefs, values, and institutions that cause societies to be attractive to immigrants. Here we describe and analyze a simple model of this process. This model suggests that long run outcomes depend on the relative strength of migration and local adaptation. When local adaption is strong enough to preserve cultural variation among groups, cultural variants that make societies attractive always predominate, but never drive alternative variants to extinction. When migration predominates, outcomes depend both on the relative attractiveness of alternative variants and on the initial sizes of societies that provide and receive immigrants.  相似文献   
52.
《Journal of morphology》2017,278(1):4-28
The laterosensory system is a mechanosensory modality involved in many aspects of fish biology and behavior. Laterosensory perception may be crucial for individual survival, especially in habitats where other sensory modalities are generally useless, such as the permanently aphotic subterranean environment. In the present study, we describe the laterosensory canal system of epigean and subterranean species of the genus Ituglanis (Siluriformes: Trichomycteridae). With seven independent colonizations of the subterranean environment in a limited geographical range coupled with a high diversity of epigean forms, the genus is an excellent model for the study of morphological specialization to hypogean life. The comparison between epigean and subterranean species reveals a trend toward reduction of the laterosensory canal system in the subterranean species, coupled with higher intraspecific variability and asymmetry. This trend is mirrored in other subterranean fishes and in species living in different confined spaces, like the interstitial environment. Therefore, we propose that the reduction of the laterosensory canal system should be regarded as a troglomorphic (= cave‐related) character for subterranean fishes. We also comment about the patterns of the laterosensory canal system in trichomycterids and use the diversity of this system among species of Ituglanis to infer phylogenetic relationships within the genus. J. Morphol. 278:4–28, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   
53.
Seed dispersal influences a wide range of ecological processes. However, measuring dispersal patterns, particularly long‐distance dispersal, has been a difficult task. Marking bird‐dispersed seeds with stable 15N isotopes has been shown to be a user‐friendly method to trace seed dispersal. In this study, we determined whether 15N urea solution could be used to enrich seeds of two common wind‐dispersed plants, Eupatorium glaucescens (Asteraceae) and Sericocarpus tortifolius (Asteraceae). We further tested if the water type (distilled versus tap) in 15N urea solutions influences the level and variability of enrichment of plant seeds, and if increasing spraying frequency per se increases enrichment. Because droughts may lower seed set or kill plants, we wanted to investigate if the additional use of an externally applied anti‐transpirant affects the intake of externally applied 15N into seeds. The results demonstrate that 15N enrichment of seeds can facilitate dispersal experiments with wind‐dispersed plants. The use of distilled water in 15N urea solutions did not increase 15N enrichment compared to tap water. Further, enrichment was more efficient at lower spray frequencies. Both the use of tap water and low frequencies could lower time, effort and project costs. The results suggest that species can be protected from drought using an anti‐transpirant without decreasing the incorporation of 15N into seeds.  相似文献   
54.
55.
Little is known about the influence of genetic architecture on local adaptation. We investigated the genetic architecture of the rapid contemporary evolution of mouthparts, the flight polymorphism and life history traits in the soapberry bug Jadera haematoloma (Hemiptera) using laboratory selection. The mouthparts of these seed‐feeding bugs have adapted in 40–50 years by decreasing in length following novel natural selection induced by a host switch to the seeds of an introduced tree with smaller fruits than those of the native host vine. Laboratory selection on beak length in both an ancestral population feeding on the native host and a derived population feeding on the introduced host reveals genetic variance allowing a rapid response (heritabilities of 0.51–0.87) to selection for either longer or shorter beaks. This selection resulted in reverse evolution by restoring long beaks in the derived population and forward evolution by re‐creating short beaks in the ancestral bugs. There were strong genetic correlations (0.68–0.84) in both populations between beak lengths and the frequency of flight morphs, with short beaks associated with short wings. The results reveal a genetically interrelated set of adaptive multivariate traits including both beak length and flight morph. This suite of traits reflects host plant patchiness and seeding phenology. Weaker evidence suggests that egg mass and early egg production may be elements of the same suite. Reversible or forward evolution thus may occur in a broad set of genetically correlated multivariate traits undergoing rapid contemporary adaptation to altered local environments.  相似文献   
56.
Abstract. The terrestrial polychaete Hrabeiella periglandulata has many features in common with the Clitellata and the polychaete taxon Parergodrilidae. An ultrastructural investigation of the central nervous system and the sense organs of H. periglandulata individuals was undertaken to look for structural similarities with these taxa as well as to elucidate whether these structures might exhibit adaptive characters typical of terrestrial annelids in general. The central nervous system of H. periglandulata is subepidermal and consists of a brain situated in the first achaetigerous segment. The circumoesophageal connectives are without dorsal and ventral roots, and the ventral nerve cord has closely associated connectives and ill-defined ganglia. In contrast to clitellates and the terrestrial parergodrilid Parergodrilus heideri , nuchal organs are present. They are internal and highly modified compared with those of marine polychaetes but are similar to those of the intertidal parergodrilid Stygocapitella subterranea . A pair of ciliary sense organs is present inside the brain, resembling similar structures in many microdrile oligochaetes. These observations indicate that there are, in fact, structural similarities between the nervous system and the sense organs of clitellates, parergodrilids, and Hrabeiella individuals. These similarities may very likely be the result of convergent evolution in adaptation to the terrestrial environment.  相似文献   
57.
Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community-level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best-fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koa and Metrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community-level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.  相似文献   
58.
Developmental plasticity describes situations where a specific input during an individual''s development produces a lasting alteration in phenotype. Some instances of developmental plasticity may be adaptive, meaning that the tendency to produce the phenotype conditional on having experienced the developmental input has been under positive selection. We discuss the necessary assumptions and predictions of hypotheses concerning adaptive developmental plasticity (ADP) and develop guidelines for how to test empirically whether a particular example is adaptive. Central to our analysis is the distinction between two kinds of ADP: informational, where the developmental input provides information about the future environment, and somatic state-based, where the developmental input enduringly alters some aspect of the individual''s somatic state. Both types are likely to exist in nature, but evolve under different conditions. In all cases of ADP, the expected fitness of individuals who experience the input and develop the phenotype should be higher than that of those who experience the input and do not develop the phenotype, while the expected fitness of those who do not experience the input and do not develop the phenotype should be higher than those who do not experience the input and do develop the phenotype. We describe ancillary predictions that are specific to just one of the two types of ADP and thus distinguish between them.  相似文献   
59.
This scanning-electron microscopic study demonstrates the convergent evolution of the mouthparts of various herbivorous stream animals (insects from different orders, an isopod, snails, fish, and a tadpole) feeding on epilithic algal pastures. This food source is rich but is often difficult to harvest. Nevertheless, a large number of species can live on it because they have evolved highly specialized mouthparts. There are four functional problems that an algae grazer has to solve: the algae must be removed from the stone, they have to be collected and crushed, and a current shield is needed to prevent the water flow sweeping away the food. Among the 30 algae grazers examined in this study, a limited number of morphological solutions have been found for each of these adaptational problems. There are multiple evolutionary pathways for mouthpart adaptation and even closely related species have often evolved different types of tools for the same function. This refects the existence of a certain amount of evolutionary scope. Such freedom of evolution is present, however, only at the beginning of the adaptiogenesis of an algae grazer. Once one of the evolutionary pathways is taken, further improvement of the mouthparts is possible only by the refinement of the ‘chosen’ type of tools. The consequence of this is that a large number of astonishing convergences have occurred in algae grazers that have independently trodden the same evolutionary pathway.  相似文献   
60.
Aim To estimate the rate of adaptive radiation of endemic Hawaiian Bidens and to compare their diversification rates with those of other plants in Hawaii and elsewhere with rapid rates of radiation. Location Hawaii. Methods Fifty‐nine samples representing all 19 Hawaiian species, six Hawaiian subspecies, two Hawaiian hybrids and an additional two Central American and two African Bidens species had their DNA extracted, amplified by polymerase chain reaction and sequenced for four chloroplast and two nuclear loci, resulting in a total of approximately 5400 base pairs per individual. Internal transcribed spacer sequences for additional outgroup taxa, including 13 non‐Hawaiian Bidens, were obtained from GenBank. Phylogenetic relationships were assessed by maximum likelihood and Bayesian inference. The age of the most recent common ancestor and diversification rates of Hawaiian Bidens were estimated using the methods of previously published studies to allow for direct comparison with other studies. Calculations were made on a per‐unit‐area basis. Results We estimate the age of the Hawaiian clade to be 1.3–3.1 million years old, with an estimated diversification rate of 0.3–2.3 species/million years and 4.8 × 10?5 to 1.3 × 10?4 species Myr?1 km?2. Bidens species are found in Europe, Africa, Asia and North and South America, but the Hawaiian species have greater diversity of growth form, floral morphology, dispersal mode and habitat type than observed in the rest of the genus world‐wide. Despite this diversity, we found little genetic differentiation among the Hawaiian species. This is similar to the results from other molecular studies on Hawaiian plant taxa, including others with great morphological variability (e.g. silverswords, lobeliads and mints). Main conclusions On a per‐unit‐area basis, Hawaiian Bidens have among the highest rates of speciation for plant radiations documented to date. The rapid diversification within such a small area was probably facilitated by the habitat diversity of the Hawaiian Islands and the adaptive loss of dispersal potential. Our findings point to the need to consider the spatial context of diversification – specifically, the relative scale of habitable area, environmental heterogeneity and dispersal ability – to understand the rate and extent of adaptive radiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号