首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5036篇
  免费   604篇
  国内免费   479篇
  2023年   119篇
  2022年   52篇
  2021年   118篇
  2020年   222篇
  2019年   245篇
  2018年   200篇
  2017年   192篇
  2016年   198篇
  2015年   191篇
  2014年   187篇
  2013年   332篇
  2012年   199篇
  2011年   195篇
  2010年   198篇
  2009年   212篇
  2008年   242篇
  2007年   249篇
  2006年   235篇
  2005年   226篇
  2004年   204篇
  2003年   197篇
  2002年   209篇
  2001年   205篇
  2000年   174篇
  1999年   148篇
  1998年   142篇
  1997年   121篇
  1996年   97篇
  1995年   85篇
  1994年   95篇
  1993年   66篇
  1992年   59篇
  1991年   65篇
  1990年   52篇
  1989年   38篇
  1988年   34篇
  1987年   38篇
  1986年   38篇
  1985年   38篇
  1984年   60篇
  1983年   17篇
  1982年   25篇
  1981年   19篇
  1980年   17篇
  1979年   11篇
  1978年   23篇
  1977年   9篇
  1976年   8篇
  1975年   5篇
  1974年   4篇
排序方式: 共有6119条查询结果,搜索用时 421 毫秒
991.
Lianas usually possess large vessels, which are vulnerable to cavitation. Root pressure may play an important role in embolism repair of vessels. However, little is known about the generality of root pressure in tropical lianas. To characterize root pressure of lianas in tropical rainforests, we used pressure transducers to measure root pressure in the rainy and dry seasons for a total of 32 lianas from 14 families common in Xishuangbanna. We further analyzed the associations of maximum root pressure with phylogeny and of transient root pressure with environmental factors. We found that all lianas we selected had root pressure, with maximum root pressure ranging from 2-138kPa. In the dry season, about 72% (23 species) of the lianas had relatively low root pressure (<15kPa) and maintained positive throughout the day. This may be important for water balance for roots and basal stems of lianas. There were three types of diurnal changes in liana root pressure. In Type I, root pressure had obvious diurnal variation in the dry and rainy seasons. In Type II, root pressure did not show obvious diurnal variation in the dry and rainy seasons. In Type III, either in the dry or in the rainy season, root pressure showed obvious diurnal variation. Root pressure varied substantially among lianas, with lianas from two families, Fabaceae and Vitaceae, usually having relatively higher root pressure, suggesting that phylogeny may influence root pressure. Transient root pressure closely responded to photosynthetically active radiation. In most cases, however, it was not related to rainfall and vapour pressure deficit. These results suggest that the associations of liana root pressure with environments need further investigation.  相似文献   
992.
Two benthic ctenophores, Coeloplana waltoni and Vallicula multiformis, are contrasted in terms of their coastal environments, habitats, abundances, seasonal occurrences, and behavior in south Florida. Coeloplana waltoni occurs as an epibiont on octocorals in open water settings, and V. multiformis is present in bio‐fouling communities, associated with macroalgae, bryozoans, and inanimate substrates in protected, back‐water habitats. In our study, individuals of C. waltoni were found under moderate to strong current flow and relatively constant temperature and salinity (T/S) conditions, whereas individuals of V. multiformis occurred at sites of low current flow and more variable T/S conditions. In C. waltoni, individuals generally adhered tightly to host colony surfaces, whereas in V. multiformis, individuals often disassociated from substrates and floated free. Mean population densities of C. waltoni ranged ~500–850 individuals 100 mL?1 (measured as the displacement volume of the octocoral habitat), and densities of V. multiformis ranged 5–360 individuals 100 mL?1 (measured as the displacement volume of the biofouling habitat). Abundance of C. waltoni was significantly highest in the 2014 warm season (June–October) when numerous minute (≤0.5 mm body length) juveniles were present. Vallicula multiformis was abundant in the 2015 and 2016 warm seasons (July–October), and also relatively abundant in the 2016 cool season (March–April). Ctenophore abundance and surface seawater temperature indicate a significant positive response to warm‐season conditions in C. waltoni, whereas numbers of V. multiformis did not show any effect of seawater temperature. Recently settled individuals of V. multiformis (≤1.0 mm) occurred throughout the year. Individuals of V. multiformis recruited to fiber‐coated sponges during warm and cool periods, with mean body sizes increasing in one cohort from 1.41 to 6.46 mm over a 39‐d period, suggesting a growth rate of ~4% d?1. Feeding in both species involves tentacle capture of water‐borne zooplankton and particulate organic matter. Individuals of C. waltoni were also observed inserting tentacles into octocoral polyps, possibly pilfering food. Chlorophyll a was detected in extracts of both ctenophore species. The high abundances and feeding behavior of benthic ctenophores could have a strong influence on octocoral and biofouling communities.  相似文献   
993.
To assess natural attenuation and the efficiency of remediation actions after more than two years a large accident with gasoline spill contaminated a wetland in a tropical region, an Ecological Risk Assessment based on the Dutch Triad was applied. In total, eight surface water-sampling points were distributed randomly in the affected area and on reference area upstream the contaminated site, with similar ecological characteristics. Risks based on chemical, ecotoxicological, and ecological lines of evidence (LoE) were calculated to integrate the environmental risk indexes. The chemical risk was derived from toxic pressure coefficients based on the total BTEX and naphthalene concentrations. Ecotoxicological LoE based on acute toxicity with Daphnia similis and Aliivibrio fischeri bioassays and chronic toxicity with Desmodesmus subspicatus bioassay contributed to raise uncertainty due to low sensitivity of acute assays. Genotoxicity and endocrine disruption biomarkers of Oreochromis niloticus were used to calculate the Biomarker Stress Index (BSI) assumed as Ecological Risk Index. The integration of the Chemical Risk Index with BSI to estimate the Biological Vulnerability Index allowed a meaningful analysis of the threats to the aquatic ecosystem, thereby supporting managers and decision-makers.  相似文献   
994.
Pristine tropical peat swamp forests (PSFs) represent a unique wetland ecosystem of distinctive hydrology which support unique biodiversity and globally significant stores of soil carbon. Yet in Indonesia and Malaysia, home to 56% of the world's tropical peatland, they are subject to considerable developmental pressures, including widespread drainage to support agricultural needs. In this article, we review the ecology behind the functioning and ecosystem services provided by PSFs, with a particular focus on hydrological processes as well as the role of the forest itself in maintaining those services. Drawing on this, we review the suitability of current policy frameworks and consider the efficacy of their implementation. We suggest that policies in Malaysia and Indonesia are often based around the narrative of oil palm and other major monocrops as drivers of prosperity and development. However, we also argue that this narrative is also being supported by a priori claims concerning the possibility of sustainability of peat swamp exploitation via drainage‐based agriculture through the adherence to best management practices. We discuss how this limits their efficacy, uptake and the political will towards enforcement. Further, we consider how both narratives (prosperity and sustainability) clearly exclude important considerations concerning the ecosystem value of tropical PSFs which are dependent on their unimpacted hydrology. Current research clearly shows that the actual debate should be focused not on how to develop drainage‐based plantations sustainably, but on whether the sustainable conversion to drainage‐based systems is possible at all.  相似文献   
995.
Crop yields in sub‐Saharan Africa remain stagnant at 1 ton ha?1, and 260 million people lack access to adequate food resources. Order‐of‐magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two‐month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100 kg N ha?1, NO emissions increased without a concomitant increase in yields. We used the geos‐chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4‐hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63 ppbv under fertilization rates of 150 kg N ha?1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110 ppbh for inputs of 150 kg N ha?1 during the March–April–May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality.  相似文献   
996.
Aims The shrublands of northern China have poor soil and nitrogen (N) deposition has greatly increased the local soil available N for decades. Shrub growth is one of important components of C sequestration in shrublands and litterfall acts as a vital link between plants and soil. Both are key factors in nutrient and energy cycling of terrestrial ecosystems, which greatly affected by nitrogen (N) addition (adding N fertilizer to the surface soil directly). However, the effects and significance of N addition on C sequestration and litterfall in shrublands remain unclear. Thus, a study was designed to investigate how N deposition and related treatments affected shrublands growth related to C sequestration and litterfall production of Vitex negundo var. heterophylla and Spiraea salicifolia in Mt. Dongling region of China.
Methods A N enrichment experiment has been conducted for V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, including four N addition treatment levels (control (N0, 0 kg N·hm-2·a-1), low N (N1, 20 kg N·hm-2·a-1), medium N (N2, 50 kg N·hm-2·a-1) and high N (N3, 100 kg N·hm-2·a-1)). Basal diameter and plant height of shrub were measured from 2012-2013 within all treatments, and allometric models for different species of shrub’s live branch, leaf and root biomass were developed based on independent variables of basal diameter and plant height, which will be used to calculate biomass increment of shrub layer. Litterfall (litterfall sometimes is named litter, referring to the collective name for all organic matter produced by the aboveground part of plants and returned to the surface, and mainly includes leaves, bark, dead twigs, flowers and fruits.) also was investigated from 2012-2013 within all treatments.
Important findings The results showed 1) mean basal diameter of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were increased by 1.69%, 2.78%, 2.51%, 1.80% and 1.38%, 1.37%, 1.59%, 2.05% every year; 2) The height growth rate (the shrub height relative growth rate is defined with the percentage increase of plant height) of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were 8.36%, 8.48%, 9.49%, 9.83% and 2.12%, 2.86%, 2.36%, 2.52% every year, respectively. Thee results indicated that N deposition stimulated growth of shrub layer both in V. negundo var. heterophylla and S. salicifolia shrublands, but did not reach statistical significance among all nitrogen treatments. The above-ground biomass increment of shrub layer in the V. negundo var. heterophylla and S. salicifolia shrublands were 0.19, 0.23, 0.14, 0.15 and 0.027, 0.025, 0.032, 0.041 t C·hm-2·a-1 respectively, which demonstrated that short-term N addition had no significant effects on the accumulation of C storage of the two shrublands. The litter production of the V. negundo var. heterophylla and S. salicifolia communities in 2013 were 135.7 and 129.6 g·m-2 under natural conditions, respectively. Nitrogen addition promoted annual production of total litterfall and different components of litterfall to a certain extent, but did not reach statistical significance among all nitrogen treatments. Above results indicated that short-term fertilization, together with extremely low soil moisture content and other related factors, lead to inefficient use of soil available nitrogen and slow response of shrublands to N addition treatments.  相似文献   
997.
《植物生态学报》2017,41(10):1103
Comparing with other regions, Asia is mostly dominated by the monsoon climate and tropical plants can be found at the furthest places away from the equator. Understanding the role of monsoon in the dispersal and evolution of tropical plants is helpful for exploring the distribution patterns of vegetation and mechanisms underlying the origin and maintenance of biodiversity in Asia. In summer, there are three types of monsoon in Asia, i.e. East Asia Monsoon, South Asia Monsoon, North-west Pacific Ocean Monsoon. The summer monsoon climate in Asia originated at about 40 Ma, when the early angiosperm evolved and started its diversification in Southeast Asia and South China. It suggested that the monsoon may facilitate the quick speciation and spread of early angiosperm. Monsoon climate facilitates the northward spread of Asia’s tropical plants and some tropical plants can be found even at Yarlung Zangbo River and the boundaries of Guizhou-Guangxi-Yunnan. Such effetcs largely change distribution patterns of zonal vegetation and even causes local vegetation types in some places with unusual topography such as tropical seasonal rainforests, monsoon rainforests, savanna and grassland along dry-hot valley in Southwest China, coastal savanna in West Hainan Island. The three summer monsoons interact at Southwest China and Indo-China Peninsula and these regions are dominated by limestone landscapes and high mountains with big rivers. Some Asia-endemic tropical taxa even formed a diversification and endemism center at this region, which may be a reason for the formation and maintenance of Indo-Burma biodiversity hotspots with global warming, the monsoon may further promote the northward spread of tropical plants and may have fundamental effects on biodiversity and flora evolution in South China.  相似文献   
998.
《植物生态学报》2017,41(9):964
Aims Seasonal snow cover is one of the most important factors that control winter soil respiration in the cold biomes. The warming-induced decreases in snowpack could affect winter soil respiration of subalpine forests. The aim of this study was to explore the effects of snow removal on winter soil respiration in a Picea asperata forest.Methods A snow removal experiment was conducted in a P. asperata forest stand in western Sichuan during the winter of 2015/2016. The snow removal treatment was implemented using wooden roof method. Soil temperatures, snow depth and soil respiration rate were simultaneously measured in plots of snow removal and controls during the experimental period.Important findings Compared to the control, snow removal increased the fluctuations of soil temperatures. The average daily temperature of the soil surface and that at 5 cm depth were 1.12 °C and 0.34 °C lower, respectively, and the numbers of freeze-thaw cycles of the soil surface and that at 5 cm depth were increased by 39 and 12, respectively, in plots of snow removal than in the controls. The average rate of winter soil respiration and CO2 efflux were 0.52 μmol·m-2·s-1 and 88.44 g·m-2, respectively. On average, snow removal reduced soil respiration rate by 21.02% and CO2 efflux by 25.99%, respectively. More importantly, the snow effect mainly occurred in the early winter. The winter soil respiration rate had a significant exponential relationship with soil temperature. However, snow removal significantly reduced temperature sensitivity of the winter soil respiration. Our results suggest that seasonal snow reduction associated with climate change could inhibit winter soil respiration in the subalpine forests of western Sichuan, with significant implications for the carbon dynamics of the subalpine forests.  相似文献   
999.
Recent global commitments have placed forest and landscape restoration at the forefront of countries' efforts to recover ecosystem services, conserve biodiversity, and mitigate the effects of climate change. However, it needs to be asked if current native tree seedling supply meets an increase in demand for forest restoration? This study assessed the current configuration, distribution, and production capacity of forest nurseries producing native trees in Brazil. Brazil provides an interesting example of how global agreements aligned with national policies can lead to the proliferation of native seedling nurseries, and the challenges faced to restore species‐rich native forest ecosystems. We found that the nurseries in the Atlantic Forest region can still meet an increase in demand—both in terms of seedling quantity and diversity—because most of their production capacity is not currently used. However, not all Brazilian biomes have sufficient nurseries to meet restoration demands, thus there is a risk of using native species from a few biogeographical regions in a much spatially wider and ecologically diverse area. In addition, lack of seed supply and qualified labor can hamper the growth of the market. Barriers to seed supply may also lead to low levels of genetic variability and floristic representation in the populations and ecosystems to be restored. We conclude that restoration of high‐diversity forest ecosystems requires policies and supportive programs, with emphasis on private nurseries, to guarantee adequate supply of native tree seedlings and provide the necessary incentives to develop the emergent economy of forest restoration.  相似文献   
1000.
One potential, unintended ecological consequence accompanying forest restoration is a shift in invasive animal populations, potentially impacting conservation targets. Eighteen years after initial restoration (ungulate exclusion, invasive plant control, and out planting native species) at a 4 ha site on Maui, Hawai'i, we compared invasive rodent communities in a restored native dry forest and adjacent non‐native grassland. Quarterly for 1 year, we trapped rodents on three replicate transects (107 rodent traps) in each habitat type for three consecutive nights. While repeated trapping may have reduced the rat (Black rat, Rattus rattus) population in the forest, it did not appear to reduce the mouse (House mouse, Mus musculus) population in the grassland. In unrestored grassland, mouse captures outnumbered rat captures 220:1, with mice averaging 54.9 indiv./night versus rats averaging 0.25 indiv./night. In contrast, in restored native forest, rat captures outnumbered mouse captures by nearly 5:1, averaging 9.0 indiv./night versus 1.9 indiv./night for mice. Therefore, relatively recent native forest restoration increased Black rat abundance and also increased their total biomass in the restored ecosystem 36‐fold while reducing House mouse biomass 35‐fold. Such a community shift is worrisome because Black rats pose a much greater threat than do mice to native birds and plants, perhaps especially to large‐seeded tree species. Land managers should be aware that forest restoration (i.e. converting grassland to native forest) can invoke shifts in invasive rodent populations, potentially favoring Black rats. Without intervention, this shift may pose risks for intended conservation targets and modify future forest restoration trajectories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号