首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2046篇
  免费   221篇
  国内免费   515篇
  2023年   43篇
  2022年   44篇
  2021年   58篇
  2020年   97篇
  2019年   115篇
  2018年   88篇
  2017年   101篇
  2016年   89篇
  2015年   99篇
  2014年   79篇
  2013年   163篇
  2012年   100篇
  2011年   93篇
  2010年   97篇
  2009年   105篇
  2008年   103篇
  2007年   109篇
  2006年   106篇
  2005年   104篇
  2004年   73篇
  2003年   85篇
  2002年   85篇
  2001年   65篇
  2000年   59篇
  1999年   56篇
  1998年   53篇
  1997年   51篇
  1996年   45篇
  1995年   36篇
  1994年   49篇
  1993年   32篇
  1992年   32篇
  1991年   30篇
  1990年   31篇
  1989年   24篇
  1988年   15篇
  1987年   26篇
  1986年   18篇
  1985年   20篇
  1984年   16篇
  1983年   9篇
  1982年   17篇
  1981年   12篇
  1980年   10篇
  1979年   6篇
  1978年   9篇
  1977年   8篇
  1976年   5篇
  1974年   3篇
  1973年   3篇
排序方式: 共有2782条查询结果,搜索用时 562 毫秒
101.
The geographic distribution of Amblyomma americanum (the lone star tick) has increased as has its role as a pathogen vector. The objectives of this study were to determine seasonal activity patterns of each life stage of A. americanum in the northwestern part of the species range and the relationship of these activity patterns among life stages and degree days. Tick activity was monitored over four years since 2007 in a forest and old field habitat located in northeast Missouri. Every other week from February to December, ticks were collected using bait and drag methods. Autocorrelations demonstrated yearly seasonal patterns in each life stage and cross‐correlations between life stages depicted a relationship between activity at a life stage and the previous stage's activity. Cross‐correlations indicated that degree days were related to activity. These data indicated that A. americanum generally complete their life cycle in a minimum of two years in northeast Missouri, with overwintering occurring predominantly in the nymphal and adult stages. These data provide a baseline to compare the life cycle of A. americanum in northeast Missouri to populations in different parts of the species range or at different times in the region.  相似文献   
102.
Peatlands store approximately 30% of global soil carbon, most in moss‐dominated bogs. Future climatic changes, such as changes in precipitation patterns and warming, are expected to affect peat bog vegetation composition and thereby its long‐term carbon sequestration capacity. Theoretical work suggests that an episode of rapid environmental change is more likely to trigger transitions to alternative ecosystem states than a gradual, but equally large, change in conditions. We used a dynamic vegetation model to explore the impacts of drought events and increased temperature on vegetation composition of temperate peat bogs. We analyzed the consequences of six patterns of summer drought events combined with five temperature scenarios to test whether an open peat bog dominated by moss (Sphagnum) could shift to a tree‐dominated state. Unexpectedly, neither a gradual decrease in the amount of summer precipitation nor the occurrence of a number of extremely dry summers in a row could shift the moss‐dominated peat bog permanently into a tree‐dominated peat bog. The increase in tree biomass during drought events was unable to trigger positive feedbacks that keep the ecosystem in a tree‐dominated state after a return to previous ‘normal’ rainfall conditions. In contrast, temperature increases from 1 °C onward already shifted peat bogs into tree‐dominated ecosystems. In our simulations, drought events facilitated tree establishment, but temperature determined how much tree biomass could develop. Our results suggest that under current climatic conditions, peat bog vegetation is rather resilient to drought events, but very sensitive to temperature increases, indicating that future warming is likely to trigger persistent vegetation shifts.  相似文献   
103.
Summary

The effects of a late-summer prescribed burn on the temperature and benthic macroinvertebrate fauna of a south-western Cape mountain stream were investigated over a period of 12 months. Temperature and discharge regimes appear well-defined and relatively predictable from year to year. As in other mediterranean-type ecosystems, seasonal changes in the structure of the invertebrate community and the relative abundance of different feeding groups appear to be associated primarily with changes in the physical environment. Distinctive summer and winter communities were identified, with chironomids dominating the fauna in summer and simuliids dominant in winter. Although the riparian vegetation was only slightly damaged by the fire, a heavy, aseasonal leaf-fall occurred shortly afterwards. The canopy remained sparse for approximately four months. Stream temperature in the post-burn year was not demonstrably affected by increased exposure to solar radiation, however, probably because the canopy remained open during the winter months. The fire appeared to have little effect on the invertebrate fauna. Apart from five rare elements of the biota, all species recorded in the pre-burn year were present in the post-burn year and in similar densities. It is concluded that the riparian vegetation is of major importance in maintaining the integrity of the stream environment.  相似文献   
104.
The feeding ecology of the caridean shrimp Palaemon peringueyi in the temporarily open/closed Kasouga Estuary, Eastern Cape, was examined during summer and winter employing stomach fullness index (SFI) analysis. Mean SFI values for male and female shrimp during summer ranged from 0.85% to 2.36% and from 0.56% and 2.61% body dry weight, respectively. During winter, SFI values for males and females were lower, and varied between 0.23% and 1.56% and 0.36% and 1.84% body dry weight, respectively. There were no significant differences in the SFI values between males and females during the two seasons. A peak in the feeding activity for both sexes was observed during the daytime during both summer and winter. For both males and females, non-linear regression analysis best explained the change in SFI over time. The gut evacuation rate constants (k) of males and females during summer were estimated at 0.43 h?1 and 0.30 h?1, respectively. These values correspond to a daily food intake equivalent to 16.2% body dwt for males and 11.1% body dwt for females. During winter, the gut evacuation rates of the shrimp were estimated at 0.35 h?1 for males and 0.28 h?1 for females. The daily ration for adult male and female shrimp during winter was estimated at 6.1% and 6.8% body dwt, respectively. The lower estimates obtained during winter appear largely to reflect the influence of the reduced water temperatures on the metabolic activities of the shrimp.  相似文献   
105.
The Elands River, Mpumalanga, is an ecologically sensitive river that is constantly threatened by a variety of human activities. The influence of a pulp and paper mill on the river's macroinvertebrate assemblages was studied in March and June 2005, representing high- and low-flow seasons, respectively. Macroinvertebrates were collected from various biotopes using a standard sampling net, and were preserved and identified to family level. A range of multivariate and univariate statistical analyses was applied to assess the spatial and temporal variations in the macroinvertebrate communities. Diversity loss and dominance by a single taxon, Melanoides tuberculata, were noted directly below the mill. Other sites did not appear to be affected. Macroinvertebrate communities at all sites showed a strong seasonal variation.  相似文献   
106.
Seasonality is known to influence ant activity in many tropical rain forests in the world such as South America and Africa. We surveyed ant fauna in the leaf litter in the locality of Minko'o. The work aimed to evaluate the effect of seasonal variation on the diversity and composition of litter ants. Ants were sampled from November 2015 to June 2017, using four sampling methods: visual capture, bait, pitfall trap and extraction. Species richness, Shannon diversity index and analysis of similarities were used to characterise diversity of ant communities between seasons. We collected 306 ant species, shared out between 56 genera and 11 subfamilies. Subfamilies Myrmicinae, Ponerinae, Dolichoderinae, Formicinae, Dorylinae, Cerapachyinae and Pseudomyrmecinae occurred in all the seasons. Species richness was highest in major dry season with 243 species followed by minor rainy season with 188, major rainy season with 177 species and finally minor dry season that recorded the lowest with 155 species. Kruskal–Wallis test showed that ant species richness did not differ between seasons (p > 0.05). Species diversity index indicated that diversity was the highest during minor dry season (H′ = 4.24), followed by the major dry season (H′ = 4.23), minor rainy season (H′ = 4.21) and lowest during major rainy season (H′ = 4.06). Eight most frequents ants have been recorded: Axinidris sp.1, Camponotus flavomarginatus, Monomorium guineense, Myrmicaria opaciventris, Odontomachus troglodytes, Carebara perpusilla, Paltothyreus tarsatus and Pheidole megacephala. Assessment of the seasonal effect on diversity reveals that dry season is richer and more diverse than rainy season and the season significantly influence the diversity of litter ants.  相似文献   
107.
Jaguars (Panthera onca) are opportunistic predators that prey on large profitable prey items, such as sea turtles at nesting beaches. Here, we use jaguar and sea turtle track-count surveys, combined with satellite telemetry of one jaguar, to evaluate whether jaguar hunting behavior and movements are influenced by seasonal sea turtle nesting in the Sector Santa Rosa of Área de Conservación Guanacaste in northwest Costa Rica. We used generalized linear models to evaluate the effect of moon phase and sea surface temperature on olive ridley (Lepidochelis olivacea) and green turtle (Chelonia mydas) nesting abundance, as well as the combination of these predictors on the frequency of jaguar predation activity (proximity to nesting beaches) and movements. For home-range size and location analyses, we calculated kernel density estimates for each season at three different temporal scales. Sea turtle nesting season influenced jaguar activity patterns, as well as sea turtle abundance was related to jaguar locations and predation events, but jaguar home-range size (88.8 km2 overall) did not differ between nesting seasons or among temporal scales. Environmental conditions influenced sea turtle nesting and, as a consequence, also influenced jaguar movements and foraging activity. Our study defined the home range of a female jaguar in the tropical dry forest and its relationship to seasonally abundant turtles. Additional information related to the effect of tourism on jaguar–sea turtle interactions would improve conservation of these species at unique nesting beaches in the area.  相似文献   
108.
109.
Local weather can influence the growth and development of young birds either indirectly, by modifying prey availability, or directly, by affecting energetic trade-offs. Such effects can have lasting implications for life history traits, but the nature of these effets may vary with the developmental stage of the birds, and over timescales from days to weeks. We examined the interactive effects of temperature, rainfall and wind speed on the mass of nestling and fledgling Barn Swallows Hirundo rustica both on the day of capture and averaging weather across the time since hatching. At the daily timescale, nestling mass was negatively correlated with temperature, but the strength of this association depended on the level of rainfall and wind speed; nestlings were typically heavier on dry or windy days, and the negative effect of temperature was strongest under calm or wet conditions. At the early lifetime timescale (i.e. from hatching to pre-fledging), nestling mass was negatively correlated with temperature at low wind speed. Fledgling body mass was less sensitive to weather; the only weather effect evident was a negative correlation with temperature at the daily scale under high rainfall that became slightly positive under low rainfall. These changes are consistent with weather effects on the availability and distribution of insects within the landscape (e.g. causing high concentrations of flying insects) and with the effects of weather variation on nest microclimate. These results together demonstrate the impacts of weather on chick growth, over immediate (daily) and longer term (nestling/fledgling lifetime) timescales. This shows that sensitivity to local weather conditions varies across the early lifetime of young birds (nestling–fledgling stages) and illustrates the mechanisms by which larger scale (climate) variations influence the body condition of individuals.  相似文献   
110.
The main objective of this study was to determine the central mechanisms involved in suppression of thermal sweating after seasonal acclimatization (SA) during passive heating (immersing the legs in 43 °C hot water for 30 min). Testing was performed in July (before-SA) and August (after-SA) [25.2±2.2 °C, 73.9±10.3% relative humidity (RH), Cheonan (Chungnam,126° 52′N, 33.38′E), in the Republic of Korea. All experiments were carried out in an automated climatic chamber (25.0±0.5 °C and RH 60.0±3.00%). Twelve healthy men (height, 174.6±5.40 cm; weight, 65.4±5.71 kg; age, 22.7±2.90 yr) participated. The local sweat onset time was delayed in the after-SA compared to that in the before-SA (p<0.001). The local sweat rate and whole body sweat loss volume decreased in the after-SA compared to those in the before-SA (p<0.001). In addition, evaporative loss volume decreased significantly in the after-SA compared to that in the before-SA [chest, upper-back, thigh and forearm (p<0.001)]. Changes in tympanic temperature and mean body temperature were significantly lower (p<0.05) and the basal metabolic rate decreased significantly in the after-SA compared to those in the before-SA (p<0.001). These results suggest that maintenance of a lower body temperature and basal metabolic rate can occur and blunt the central sudomotor mechanisms following seasonal acclimatization, which suppresses sweating sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号