首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91184篇
  免费   3950篇
  国内免费   7404篇
  2023年   817篇
  2022年   1100篇
  2021年   1724篇
  2020年   1799篇
  2019年   3134篇
  2018年   2175篇
  2017年   1712篇
  2016年   2181篇
  2015年   3327篇
  2014年   4539篇
  2013年   6177篇
  2012年   3736篇
  2011年   5227篇
  2010年   3911篇
  2009年   4052篇
  2008年   4395篇
  2007年   4596篇
  2006年   4162篇
  2005年   3655篇
  2004年   3073篇
  2003年   2717篇
  2002年   2374篇
  2001年   1900篇
  2000年   1684篇
  1999年   1678篇
  1998年   1579篇
  1997年   1365篇
  1996年   1239篇
  1995年   1459篇
  1994年   1370篇
  1993年   1274篇
  1992年   1293篇
  1991年   1080篇
  1990年   995篇
  1989年   949篇
  1988年   935篇
  1987年   914篇
  1986年   649篇
  1985年   1093篇
  1984年   1505篇
  1983年   1061篇
  1982年   1449篇
  1981年   1052篇
  1980年   1067篇
  1979年   1016篇
  1978年   653篇
  1977年   549篇
  1976年   516篇
  1975年   339篇
  1973年   483篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
141.
The genus Shewanella comprises about 70 species of Gram-negative, facultative anaerobic bacteria inhabiting various environments, which have shown great potential in various biotechnological applications ranging from environmental bioremediation, metal(loid) recovery and material synthesis to bioenergy generation. Most environmental and energy applications of Shewanella involve the biofilm mode of growth on surfaces of solid minerals or electrodes. In this article, we first provide an overview of Shewanella biofilm biology with the focus on biofilm dynamics, biofilm matrix, and key signalling systems involved in Shewanella biofilm development. Then we review strategies recently exploited to engineer Shewanella biofilms to improve biofilm-mediated bioprocesses.  相似文献   
142.
Summary In the pars tuberalis of the hypophysis of Rana temporaria, which shows the ultrastructural characteristics of a polypeptide hormone secreting endocrine gland, seasonal changes of the ultrastructure are described. In accordance with the literature, these seasonal changes of ultrastructure are interpreted as the morphological expression of seasonal changes of endocrine activity of the pars tuberalis.  相似文献   
143.
Rpn1 (109 kDa) and Rpn2 (104 kDa) are components of the 19S regulatory complex of the proteasome. The central portions of both proteins are predicted to have toroidal α-solenoid folds composed of 9-11 proteasome/cyclosome repeats, each ∼ 40 residues long and containing two α-helices and turns [A. V. Kajava, J. Biol. Chem. 277, 49791-49798, 2002]. To evaluate this prediction, we examined the full-length yeast proteins and truncated versions thereof consisting only of the repeat-containing regions by gel filtration, CD spectroscopy, and negative-staining electron microscopy (EM). All four proteins are monomeric in solution and highly α-helical, particularly the truncated ones. The EM data were analyzed by image classification and averaging techniques. The preponderant projections, in each case, show near-annular molecules 6-7 nm in diameter. Comparison of the full-length with the truncated proteins showed molecules similar in size and shape, indicating that their terminal regions are flexible and thus smeared to invisibility in the averaged images. We tested the toroidal model further by calculating resolution-limited projections and comparing them with the EM images. The results support the α-solenoid model, except that they indicate that the repeats are organized not as symmetrical circular toroids but in less regular horseshoe-like structures.  相似文献   
144.
Monoacylglycerol lipase (MAGL) has emerged as an attractive drug target because of its important role in regulating the endocannabinoid 2-arachidonoylglycerol (2-AG) and its hydrolysis product arachidonic acid (AA) in the brain. Herein, we report the discovery of a novel series of diazetidinyl diamide compounds 6 and 10 as potent reversible MAGL inhibitors. In addition to demonstrating potent MAGL inhibitory activity in the enzyme assay, the thiazole substituted diazetidinyl diamides 6d–l and compounds 10 were also effective at increasing 2-AG levels in a brain 2-AG accumulation assay in homogenized rat brain. Furthermore, selected compounds have been shown to achieve good brain penetration after oral administration in an animal study.  相似文献   
145.
146.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
147.
148.
149.
In this study we have measured, under experimental conditions which maintained efficient coupling, respiratory intensity, respiratory control, oxidative phosphorylation capacity and protonmotive force. Succinate cytochrome-c reductase and cytochrome-c oxidase activities were also studied. These investigations were carried out using kidney mitochondria from cyclosporine-treated rats (in vivo studies) and from untreated rats in the presence of cyclosporine (in vitro studies). Inhibition of respiratory intensity by cyclosporine did not exceed 21.1% in vitro and 15.9% in vivo. Since there was no in vitro inhibition of succinate cytochrome-c reductase and cytochrome-c oxidase activities, the slowing of electron flow observed can be interpreted as a consequence of an effect produced by cyclosporine between cytochromes b and c1. Cyclosporine had no effect on respiratory control either in vitro or in vivo. Statistically significant inhibition of the oxidative phosphorylation was observed both in vitro (6.6%) and in vivo (12.1%). Moreover, cyclosporine did not induce any change of membrane potential either in vivo or in vitro. Our findings show that cyclosporine is neither a protonophore, nor a potassium ionophore. In cyclosporine-treated rats we noticed a decrease of protein in subcellular fraction, including the mitochondrial fraction. The role of the inhibition respiratory characteristics by cyclosporine in nephrotoxicity in vivo must take account of these two parameters: inhibition of the respiratory characteristics measured in vitro and diminution of mitochondrial protein in cyclosporine-treated rats.  相似文献   
150.
A mathematical model of photosystem II (PSII) events was used to analyze chlorophyll fluorescence transients in the time domain from 100 ns to 10 s after excitation with a saturating 10-ns flash, applied as a part of specialized illumination protocol, using preparations of a thermophilic strain of the unicellular green alga, Chlorella pyrenoidosa Chick (using both intact and diuron-treated cells). Analysis of simulation results has proven that particular attention should be given to flash-induced recombination processes, including nonradiative recombination in PSII, while subsequent charge transfer along the electron transport chain of thylakoid membrane can be adequately described by a single reaction of quinone reoxidation. The PSII model was extended by taking inhibition by diuron of the electron transport in the acceptor side of PSII into account, which allowed simulation of fluorescence induction curves observed in the presence of this inhibitor. The model parameters were determined (stromal pH, rate constants of nonradiative recombination, and the initial reduction state of the quinone pool) which provided adequate simulation of experimentally observed ratios of the maximal and initial fluorescence levels (F m/F 0).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号