首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6028篇
  免费   455篇
  国内免费   791篇
  2024年   13篇
  2023年   90篇
  2022年   118篇
  2021年   152篇
  2020年   182篇
  2019年   235篇
  2018年   220篇
  2017年   189篇
  2016年   193篇
  2015年   177篇
  2014年   282篇
  2013年   404篇
  2012年   248篇
  2011年   331篇
  2010年   241篇
  2009年   299篇
  2008年   317篇
  2007年   373篇
  2006年   334篇
  2005年   270篇
  2004年   226篇
  2003年   209篇
  2002年   223篇
  2001年   170篇
  2000年   151篇
  1999年   131篇
  1998年   111篇
  1997年   123篇
  1996年   103篇
  1995年   78篇
  1994年   83篇
  1993年   88篇
  1992年   82篇
  1991年   58篇
  1990年   66篇
  1989年   63篇
  1988年   49篇
  1987年   48篇
  1986年   43篇
  1985年   70篇
  1984年   70篇
  1983年   58篇
  1982年   61篇
  1981年   49篇
  1980年   40篇
  1979年   37篇
  1978年   24篇
  1977年   33篇
  1975年   16篇
  1973年   14篇
排序方式: 共有7274条查询结果,搜索用时 15 毫秒
21.
Using an insoluble inorganic salt precipitation technique, the permeability of cell walls and especially of endodermal Casparian bands (CBs) for ions was tested in young roots of corn (Zea mays) and rice (Oryza sativa). The test was based on suction of either 100 µm CuSO4 or 200 µm K4[Fe(CN)6] into the root from its medium using a pump (excised roots) or transpirational stream (intact seedlings), and subsequent perfusion of xylem of those root segments with the opposite salt component, which resulted in precipitation of insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+ could cross the endodermis apoplastically in both plant species (although at low rates) developing brown salt precipitates in cell walls of early metaxylem and in the region between CBs and functioning metaxylem vessels. Hence, at least Cu2+ did cross the endodermis dragged along with the water. The results suggested that CBs were not perfect barriers to apoplastic ion fluxes. In contrast, ferrocyanide ions failed to cross the mature endodermis of both corn and rice at detectable amounts. The concentration limit of apoplastic copper was 0.8 µm at a perfusion with 200 µm K4[Fe(CN)6]. Asymmetric development of precipitates suggested that the cation, Cu2+, moved faster than the anion, [Fe(CN)6]4–, through cell walls including CBs. Using Chara cell wall preparations (‘ghosts’) as a model system, it was observed that, different from Cu2+, ferrocyanide ions remained inside wall-tubes suggesting a substantially lower permeability of the latter which agreed with the finding of an asymmetric development of precipitates. In both corn and rice roots, there was a significant apoplastic flux of ions in regions where laterals penetrated the endodermis. Overall, the results show that the permeability of CBs to ions is not zero. CBs do not represent a perfect barrier for ions, as is usually thought. The permeability of CBs may vary depending on growth conditions which are known to affect the intensity of formation of bands.  相似文献   
22.
Sodium-induced calcium deficiency in salt-stressed corn   总被引:9,自引:5,他引:4  
Abstract The effect of the Na+/Ca2+ ratio in the root media on salt-stressed corn (Zea mays L. cvs DeKalb XL-75 and Pioneer 3906) was determined in greenhouse experiments. Plants grown in a complete nutrient solution salinized with 86.5 mol m?3 NaCl exhibited severe Ca2+ deficiency symptoms at the four-leaf stage. The symptoms disappeared when part of the NaCl was replaced with 10 mol m?3 CaCl2 (Na+/Ca2+ molar ratio = 5.7). Salt stress at an iso-osmotic potential of ?0.4 MPa substantially decreased shoot growth at all solution Na+/Ca2+ ratios from 34.6 to 0.26. However, the dry weights of blades at 26 d of age were much less when plants were salinized with NaCl alone, particularly that of DeKalb XL-75 which was more susceptible to Na-induced Ca2+ deficiency than was Pioneer 3906. The growth of sheaths was similarity reduced by sail stress at all Na+/Ca2+ ratios. The symptoms of Ca2+ deficiency were correlated with low Ca2+ concentrations in the leaf tissue. Ca2+ concentrations in the developing blades of NaCl-stressed plants were much lower than in control plants. As the Na+/Ca2+ ratio in the solution was decreased, Ca2+ levels increased in both the blades and sheaths while Na+ concentrations greatly decreased. DeKalb XL-75 was much less effective than Pioneer 3906 in restricting the uptake of Na+. The results clearly indicate that NaCl stress may cause lesions and unique plant responses that are not manifested on agronomic plants grown on saline soils.  相似文献   
23.
Abstract Salt excretion by glands on the leaves of Leptochloa fusca was studied. The rate of excretion was strongly dependent on temperature up to 39°C, which is near the optimum for photosynthesis in this thermophilic C4 grass. The concentration of salt in the xylem required to sustain the observed rate of excretion was low (about two orders of magnitude less than the external concentration). Salt excretion is concluded to be a secondary mechanism of salt tolerance, with exclusion at the roots being the major mechanism. The rate of salt excretion was strongly dependent on temperature.  相似文献   
24.
Cd induced changes of Zn and Cd distribution in the liver and kidneys were studied in relation to Cd metallothionein (MT) synthesis. Wistar male rats were given CdCl2 by sc injection of .8, 1.5, and 3.0 mg Cd/kg three times a week for three weeks. Cd levels of liver and kidneys increased with the increment of Cd dosage and 80–90% of Cd was found in the cytosol. The MT fractions contained 80–89% cytosolic Cd in the liver and 55–75% Cd in the kidneys. Zn concentrations in the liver increased following Cd administration, But Zn in the kidneys showed only slight increase. There was a distinct decrease of Cu concentration in the liver of the 3.0 mg group. In contrast, Cu concentrations in the kidneys increased about three times in the .8 and 1.5 mg Cd groups, but Cu in the 3.0 mg group showed only 1.5 times increase. The changes of these metal concentrations were observed mainly in the cytosol. Non-MT-Cd in the kidneys was maximum in the 1.5 mg group, but the 3.0 mg group showed significant decrease. In parallel with this decrease of Cd, Cu and Zn in the kidneys showed similar decrease. When the kidneys are injured, Zn and Cu appear to leak from this organ.  相似文献   
25.
26.
Summary Two annual species of Bromus, an invader (B. hordeaceus, ex B. mollis) and a non-invader (B. intermedius), were grown for 28 days in growth chambers, at 5 and 100 M NO 3 - in flowing nutrient solution. No differences between the two species were observed at either NO 3 - level, in terms of relative growth rate (RGR) or its components, dry matter partitioning, specific NO 3 - absorption rate, nitrogen concentration, and other characteristics of NO 3 - uptake and photosynthesis. The effects of decreasing NO 3 - concentration in the solution were mainly to decrease the NO 3 - concentration in the plants through decreased absorption rate, and to decrease the leaf area ratio through increased specific leaf mass and decreased leaf mass ratio. Organic nitrogen concentration varied little between the two treatments, which may be the reason why photosynthetic rates were not altered. Consequently, RGR was only slightly decreased in the 5-M treatment compared to the 100-M treatment. This is in contrast with other species, where growth is reduced at much higher NO 3 - concentrations. These discrepancies may be related to differences in RGR, since a log-linear relationship was found between RGR and the NO 3 - concentration at which growth is first reduced. In addition, a strong linear relationship was found between the RGR of these species and their maximum absorption rate for nitrate, suggesting that the growth of species with low maximum RGR may be partly regulated by nutrient uptake.  相似文献   
27.
Summary Characteristics of inorganic carbon assimilation by photosynthesis in seawater were investigated in six species of the Fucales (five Fucaceae, one Cystoseiraceae) and four species of the Laminariales (three Laminariaceae, one Alariaceae) from Arbroath, Scotland. All of the algae tested could photosynthesise faster at high external pH values than the uncatalysed conversion of HCO 3 - to CO2 can occur, i.e. can use external HCO 3 - . They all had detectable extracellular carbonic anhydrase activity, suggesting that HCO 3 - use could involve catalysis of external CO2 production, a view supported to some extent by experiments with an inhibitor of carbonic anhydrase. All of the algae tested had CO2 compensation concentrations at pH 8 which were lower than would be expected from diffusive entry of CO2 supplying RUBISCO as the initial carboxylase, consistent with the operation of energized entry of HCO 3 - and / or CO2 acting as a CO2 concentrating mechanism. Quantitative differences among the algae examined were noted with respect to characteristics of inorganic C assimilation. The most obvious distinction was between the eulittoral Fucaceae, which are emersed for part of, or most of, the tidal cycle, and the other three families (Cystoseiraceae, Laminariaceae, Alariaceae) whose representatives are essentially continually submersed. The Fucaceae examined are able to photosynthesise at high pH values, and have lower CO2 compensation concentrations, and lower K1/2 values for inorganic C use in photosynthesis, at pH 8, than the other algae tested. Furthermore, the Fucaceae are essentially saturated with inorganic C for photosynthesis at the normal seawater concentration at pH 8 and 10°C. These characteristics are consistent with the dominant role of a CO2 concentrating mechanism in CO2 acquisition by these plants. Other species tested have characteristcs which suggest a less effective HCO 3 - use and CO2 concentrating mechanism, with the Laminariaceae being the least effective; unlike the Fucaceae, photosynthesis by these algae is not saturated with inorganic C in normal seawater. Taxonomic and ecological implications of these results are considered in relation to related data in the literature.  相似文献   
28.
Plants of Taraxacum sellandii Dahlst., a microspecies adapted to fertile, and Taraxacum nordstedtii Dahlst., adapted to infertile soils, were cultured hydroponically, either on a complete nutrient solution or on one deprived of nitrogen, phosphorus, or potassium ions. For all four treatments, the growth and internal mineral concentration of the plants was monitored. For plants cultured on a complete nutrient solution, the uptake rates of nitrate, phosphate, and potassium ions were determined. Luxury consumption of the three macronutrients was computed as the excess of ion absorption over the ion uptake rates minimally required to sustain maximum growth. In these calculations the critical N, P, or K+ concentrations, earlier derived, were used as parameters describing the mineral status minimally required to allow maximum growth. Efficiency in use of the three macroelements at various levels of mineral accumulation was also computed. Finally, the response to phosphate starvation as related to phosphate uptake capacity and the accumulation of P was investigated.
The physiological properies investigated provide a causal background for the superior adaptation of T. nordstedtii as compared to T. sellandii to infertile sites. Taraxacum nordstedtii had a higher relative luxury consumption of NO3, H2PO-4, and K+, a higher efficiency in N and P use at N– and (severe) P-deficiency, respectively; and, after phosphate starvation, a relatively high preservation of phosphate uptake capacity and an enlargement of P storage. In combination with the low potential growth, luxury consumption will be particularly effective in T. nordstedtii in preventing or minimizing mineral deficiency. The distribution of minerals between cytoplasm and vacuoles as a factor in mineral use efficiency is discussed.  相似文献   
29.
Growth and respiration in two mangrove species at a range of salinities   总被引:3,自引:0,他引:3  
Growth and dark respiration rates were measured in leaves and roots of seedlings of Avicennia marina (Forsk.) Vierh, (grey mangrove), and Aegiceras corniculatum (L.) Blanco (river mangrove). Plants were grown in a soil mixture at ambient temperatures and watered with 0.25 and 100% sea-water. Oxygen uptake was measured in excised root and leaf samples. In both species growth was maximal in 25% sea-water, and root respiration was lowest in 100% sea-water. Differences were found between the two species in the responses of leaf respiration to salinity. In A. corniculatum leaf respiration was raised in both 25 and 100% sea-water, while in A. marina only leaves in 100% sea-water showed higher rates of respiration. These results are consistent with the view that A. marina is the more salt-tolerant of the two species. In A. corniculatum the respiration rates of the hypocotyl were also measured, and were much higher in 100% sea-water than in the other two treatments. The results suggest that at high salinities there is a high metabolic cost in the shoots of both species, and that at such salinities rates of root respiration may be limited by the supply of substrate from the shoots.  相似文献   
30.
The germination response to NaCl treatments has been studied in Melilotus seed populations collected from saline and non-saline soils in the Guadalquivir delta. The rank orders for salt tolerance and seed weight were the same in the threeMelilotus species living in this area:Melilotus messanensis>M. segetalis>M. indica. Within the species, differences in germination response to salinity were found inM. indica (6 populations) andM. segetalis (8 populations). The relationship between salt tolerance during germination and salinity of maternal habitat is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号