首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   17篇
  国内免费   10篇
  2023年   4篇
  2022年   8篇
  2021年   10篇
  2020年   5篇
  2019年   14篇
  2018年   13篇
  2017年   4篇
  2016年   3篇
  2015年   9篇
  2014年   13篇
  2013年   12篇
  2012年   12篇
  2011年   29篇
  2010年   12篇
  2009年   14篇
  2008年   12篇
  2007年   18篇
  2006年   15篇
  2005年   12篇
  2004年   13篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有311条查询结果,搜索用时 31 毫秒
101.
Deficiency of 5-taurinomethyl-2-thiouridine, τm5s2U at the 34th ‘wobble’ position in tRNALys causes MERRF (Myoclonic Epilepsy with Ragged Red Fibers), a neuromuscular disease. This modified nucleoside of mt tRNALys, recognizes AAA/AAG codons during protein biosynthesis process. Its preference to identify cognate codons has not been studied at the atomic level. Hence, multiple MD simulations of various molecular models of anticodon stem loop (ASL) of mt tRNALys in presence and absence of τm5s2U34 and N6-threonylcarbamoyl adenosine (t6A37) along with AAA and AAG codons have been accomplished. Additional four MD simulations of multiple ASL mt tRNALys models in the context of ribosomal A-site residues have also been performed to investigate the role of A-site in recognition of AAA/AAG codons. MD simulation results show that, ASL models in presence of τm5s2U34 and t6A37 with codons AAA/AAG are more stable than the ASL lacking these modified bases. MD trajectories suggest that τm5s2U recognizes the codons initially by ‘wobble’ hydrogen bonding interactions, and then tRNALys might leave the explicit codon by a novel ‘single’ hydrogen bonding interaction in order to run the protein biosynthesis process smoothly. We propose this model as the ‘Foot-Step Model’ for codon recognition, in which the single hydrogen bond plays a crucial role. MD simulation results suggest that, tRNALys with τm5s2U and t6A recognizes AAA codon more preferably than AAG. Thus, these results reveal the consequences of τm5s2U and t6A in recognition of AAA/AAG codons in mitochondrial disease, MERRF.  相似文献   
102.
Chu CY  Wu SY  Wu YC  Lin CY 《Bioresource technology》2011,102(18):8669-8675
Three bioreactor configurations were employed in these investigations, which consisted of working volumes of 10, 1.2 and 1.2 L. Power spectrum diagrams of bed pressure fluctuation were used with hydraulic retention times (HRT) and geometric factors to identify the flow regimes in the bioreactors, where HRT varied from 8 to 1 h. It was found that the flow regimes in the bioreactors changed from a dispersed regime to coalesced and slugging regimes, when the biogas production rate (BPR) increased, as a result of decreasing the operating HRT. The flow regime was a dispersed bubble regime when the HRT was higher than 4 h in the bioreactor, whereas when the HRT was 2 h the coalesced bubble phenomena occurred in the bioreactor. A slugging regime was found when the HRT was lower than 1 h in thinner bioreactor.  相似文献   
103.
The TicS5 (Translocon at the inner envelope membrane of chloroplasts, 55 kDa) protein was identified in pea as a putative regulator, possibly linking chloroplast protein import to the redox state of the photosynthetic machinery. Two Tic55 homologs have been proposed to exist in Arabidopsis: atTic55-11 and AtPTC52 (Protochlorophyllide-dependent Trans- Iocon Component, 52 kDa; has also been called atTic55-1V). Our phylogenetic analysis shows that attic55-11 is an ortholog of psTic55 from pea (Pisum sativurn), and that AtPTC52 is a more distant homolog of the two. AtPTC52 was included in this study to rule out possible functional links between the proteins in Arabidopsis. No detectable mutant phenotypes were found in two independent T-DNA knockout mutant plant lines for each Arabidopsis protein, when compared with wild- type: visible appearance, chlorophyll content, photosynthetic performance, and chloroplast protein import, for example, were all normal. Both wild-type and tic55-11 mutant chloroplasts exhibited deficient protein import when treated with diethylpyrocarbonate, indicating that Tic55 is not the sole target of this reagent in relation to protein import. Furthermore, ptc52 mutant chloroplasts were not defective with respect to pPORA import, which was previously reported to involve PTC52 in barley. Thus, we conclude that atTic55-11 and AtPTC52 are not strictly required for functional protein import in Arabidopsis.  相似文献   
104.
Although many aspects of the physiological and pathophysiological mechanisms remain unknown, recent advances in our knowledge suggest that the CREC proteins are promising disease biomarkers or targets for therapeutic intervention in a variety of diseases. The CREC family of low affinity, Ca2+‐binding, multiple EF‐hand proteins are encoded by five genes, RCN1, RCN2, RCN3, SDF4, and CALU, resulting in reticulocalbin, ER Ca2+‐binding protein of 55 kDa (ERC‐55), reticulocalbin‐3, Ca2+‐binding protein of 45 kDa (Cab45), and calumenin. Alternative splicing increases the number of gene products. The proteins are localized in the cytosol, in various parts of the secretory pathway, secreted to the extracellular space or localized on the cell surface. The emerging functions appear to be highly diverse. The proteins interact with several different ligands. Rather well‐described functions are attached to calumenin with the inhibition of several proteins in the endoplasmic or sarcoplasmic reticulum membrane, the vitamin K1 2,3‐epoxide reductase, the γ‐carboxylase, the ryanodine receptor, and the Ca2+‐transporting ATPase. Other functions concern participation in the secretory process, chaperone activity, signal transduction as well as participation in a large variety of disease processes.  相似文献   
105.
The adapter 3BP2 is involved in leukocyte signaling downstream Src/Syk-kinases coupled immunoreceptors. Here, we show that 3BP2 directly interacts with the endocytic scaffold protein CIN85 and the actin-binding protein HIP-55. 3BP2 co-localized with CIN85 and HIP-55 in T cell rafts and at the T cell/APC synapse, an active zone of receptors and proteins recycling. A binding region of CIN85 SH3 domains on 3BP2 was mapped to a PVPTPR motif in the first proline-rich region of 3BP2, whereas the C-terminal SH3 domain of HIP-55 bound a more distal proline-rich domain of 3BP2. Together, our data suggest an unexpected role of 3BP2 in endocytic and cytoskeletal regulation through its interaction with CIN85 and HIP-55.  相似文献   
106.
The present study made attempts to update comprehensive eutherian Mas-related G protein-coupled receptor gene data sets, using public eutherian genomic sequence data sets and new genomics and molecular evolution tests. Among 254 potential coding sequences, the most comprehensive gene data set of eutherian Mas-related G protein-coupled receptor genes included 119 complete coding sequences that described eight major gene clusters. The present analysis integrated gene annotations, phylogenetic analysis and protein molecular evolution analysis and first explained differential gene expansion patterns of eutherian Mas-related G protein-coupled receptor genes. The updated classification and nomenclature of eutherian Mas-related G protein-coupled receptor genes were proposed as new framework of future experiments.  相似文献   
107.
The activation of immunocompetent cells by lipopolysaccharide (LPS) during severe Gram-negative infections is responsible for the pathophysiological reactions, possibly resulting in the clinical picture of sepsis. Monocytes recognize LPS mainly through the LPS receptor CD14, however, other cellular binding structures have been assumed to exist. In previous studies, we have described an 80-kDa LPS-binding membrane protein (LMP80), which is present on human monocytes as well as endothelial cells. Here we demonstrate that LMP80 is widely distributed and that it forms complexes together with LPS and sCD14. Furthermore, we report on the biochemical purification of LMP80 and its identification as decay-accelerating factor, CD55, by amino acid sequencing and cloning techniques. Our results imply a new feature of CD55 as a molecule which interacts with LPS/sCD14 complexes. However, the involvement of CD55 in LPS-induced signaling remains to be elucidated.  相似文献   
108.
We present a framework for modeling gliomas growth and their mechanical impact on the surrounding brain tissue (the so-called, mass-effect). We employ an Eulerian continuum approach that results in a strongly coupled system of nonlinear Partial Differential Equations (PDEs): a reaction-diffusion model for the tumor growth and a piecewise linearly elastic material for the background tissue. To estimate unknown model parameters and enable patient-specific simulations we formulate and solve a PDE-constrained optimization problem. Our two main goals are the following: (1) to improve the deformable registration from images of brain tumor patients to a common stereotactic space, thereby assisting in the construction of statistical anatomical atlases; and (2) to develop predictive capabilities for glioma growth, after the model parameters are estimated for a given patient. To our knowledge, this is the first attempt in the literature to introduce an adjoint-based, PDE-constrained optimization formulation in the context of image-driven modeling spatio-temporal tumor evolution. In this paper, we present the formulation, and the solution method and we conduct 1D numerical experiments for preliminary evaluation of the overall formulation/methodology.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号