首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4296篇
  免费   572篇
  国内免费   134篇
  2024年   8篇
  2023年   102篇
  2022年   79篇
  2021年   214篇
  2020年   196篇
  2019年   214篇
  2018年   195篇
  2017年   186篇
  2016年   201篇
  2015年   229篇
  2014年   277篇
  2013年   247篇
  2012年   203篇
  2011年   206篇
  2010年   164篇
  2009年   228篇
  2008年   246篇
  2007年   254篇
  2006年   207篇
  2005年   173篇
  2004年   141篇
  2003年   153篇
  2002年   117篇
  2001年   89篇
  2000年   90篇
  1999年   86篇
  1998年   89篇
  1997年   63篇
  1996年   75篇
  1995年   38篇
  1994年   37篇
  1993年   56篇
  1992年   30篇
  1991年   19篇
  1990年   20篇
  1989年   16篇
  1988年   5篇
  1987年   13篇
  1986年   12篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1978年   3篇
排序方式: 共有5002条查询结果,搜索用时 15 毫秒
11.
12.
Most of the classical theory on species coexistence has been based on species‐level competitive trade‐offs. However, it is becoming apparent that plant species display high levels of trait plasticity. The implications of this plasticity are almost completely unknown for most coexistence theory. Here, we model a competition–colonisation trade‐off and incorporate trait plasticity to evaluate its effects on coexistence. Our simulations show that the classic competition–colonisation trade‐off is highly sensitive to environmental circumstances, and coexistence only occurs in narrow ranges of conditions. The inclusion of plasticity, which allows shifts in competitive hierarchies across the landscape, leads to coexistence across a much broader range of competitive and environmental conditions including disturbance levels, the magnitude of competitive differences between species, and landscape spatial patterning. Plasticity also increases the number of species that persist in simulations of multispecies assemblages. Plasticity may generally increase the robustness of coexistence mechanisms and be an important component of scaling coexistence theory to higher diversity communities.  相似文献   
13.
Troy Day  J. D. McPhail 《Oecologia》1996,108(2):380-388
We conducted an experiment to assess the change in foraging efficiency resulting from diet-induced morphological and behavioural plasticity in a species of freshwater, threespine stickleback (Gasterosteus sp.). Different degrees of morphological and behavioural change were induced using two prey items commonly found in the diet of this species, allowing us to estimate the relative importance of each type of plasticity. The purpose of the experiment was twofold. First, earlier work had suggested that diet variability might be an important factor in the evolution of trophic morphological plasticity in sticklebacks. The present results extend this work by revealing the adaptive significance of morphological plasticity. The current experiment also qualitatively assessed the compatibility of the time scale of morphological change with that of the natural resource variability experienced by this species. The results indicate that diet-induced plasticity improves foraging efficiency continuously for up to 72 days of prey exposure. This is probably due in part to plasticity of the external trophic morphology but our results also suggest a complex interplay between morphology and behaviour. The time scale appears to be matched to that of natural diet variability although it is possible that some traits exhibit non-labile plasticity. Our discussion highlights the important distinction between conditions favouring the evolution of labile versus non-labile plasticity. The second objective of the experiment was to determine the relative importance of morphological and behavioural plasticity. Few studies have attempted to quantify the adaptive significance of morphological plasticity and no study to our knowledge has separated the effects of morphological and behavioural plasticity. Our experiment reveals that both behavioural and morphological plasticity are important and it also suggests a dichotomy between the two: behavioural plasticity predominately affects searching efficiency whereas morphological plasticity predominately affects handling efficiency.  相似文献   
14.
Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had the opposite effects. The increase in plant height under the low R/FR ratio was accompanied by a reduction in the number of leaves. Population differences in growth form resembled the differences between plants grown in different light environments: plants from the shade population had rosettes with long erect leaves, whereas plants from the sun population formed prostrate rosettes with short leaves. Plants from the shade population were more responsive to the R/FR ratio than plants from the sun population: the increases in leaf length, plant height, and leaf area ratio under a low R/FR ratio were larger in the shade population. However, differences in plasticity were small compared to the population difference in growth form itself. We argue that plants do not respond optimally to shading and that developmental constraints might have limited the evolution of an optimal response. Received: 8 December 1996 / Accepted: 31 March 1997  相似文献   
15.
16.
Developmental plasticity describes situations where a specific input during an individual''s development produces a lasting alteration in phenotype. Some instances of developmental plasticity may be adaptive, meaning that the tendency to produce the phenotype conditional on having experienced the developmental input has been under positive selection. We discuss the necessary assumptions and predictions of hypotheses concerning adaptive developmental plasticity (ADP) and develop guidelines for how to test empirically whether a particular example is adaptive. Central to our analysis is the distinction between two kinds of ADP: informational, where the developmental input provides information about the future environment, and somatic state-based, where the developmental input enduringly alters some aspect of the individual''s somatic state. Both types are likely to exist in nature, but evolve under different conditions. In all cases of ADP, the expected fitness of individuals who experience the input and develop the phenotype should be higher than that of those who experience the input and do not develop the phenotype, while the expected fitness of those who do not experience the input and do not develop the phenotype should be higher than those who do not experience the input and do develop the phenotype. We describe ancillary predictions that are specific to just one of the two types of ADP and thus distinguish between them.  相似文献   
17.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   
18.
The body shape of 1303 adult male three-spined stickleback Gasterosteus aculeatus from 118 populations on Haida Gwaii archipelago off the mid-coast of British Columbia was investigated using discriminant function analysis on partial warp scores generated from 12 homologous landmarks on a digital image of each fish. Results demonstrated geographical differences in adult body shape that could be predicted by both abiotic and biotic factors of the habitat. Populations with derived shape (CV1−), including thick peduncles, posterior and closely spaced dorsal spines, anterior pelvis, small dorsal and anal fins, were found in small, shallow, stained ponds, and populations with less derived shape (CV1+), with small narrow peduncles, anterior and widely spaced dorsal spines, posterior pelvis, large dorsal and anal fins were found in large, deep, clear lakes. This relationship was replicated between geographic regions; divergent mtDNA haplotypes in lowland populations; between predation regimes throughout the archipelago, and in each geographical region and between predation regimes in lowland populations monomorphic for the Euro and North American mtDNA haplotype. There were large-bodied populations with derived shape (CV2−), including small heads and shallow elongate bodies in open water habitats of low productivity, and populations with smaller size and less derived shape (CV2+), with large heads and deeper bodies in higher productivity, structurally complex habitats. This relationship was replicated between geographic regions, and partially between divergent mtDNA haplotypes in lowland populations. Field tests for phenotypic plasticity of body shape suggest that <10% of the total variation in body shape among populations throughout the archipelago can be attributed to plasticity.  相似文献   
19.
20.
Regulation of growth and development by photoperiod was studied in a population of the speckled wood butterfly, Purarge aegeria L. (Lepidoptera: Satyrinae), from southern Sweden. Individuals were reared in a range of photoperiodic regimes (9L. to 22L) and temperatures (13°C to 21° C). Plasticity was found for important life-history traits- generation time, growth rate and final weight and seasonal regulation of development in response to photoperiod was found to occur at two levels. Purarge aegeria hibernates as a third instar larva or in the pupal stage, cantering one of four major developmental pathways in response to photoperiod: (1) direct development in both the larval and pupal stages, (2) pupal winter diapause with or (3) without a preceding larval summer diapause, or (4) larval winter diapause. In addition to this high-level regulation of individual development, larval growth rate and pupal development rate also appear to be finally regulated by photoperiod within each major pathway. As photoperiods decreased from 22 h to 17 h at 17° C, growth rate among directly developing larvae increased progressively, as was the case for larva? developing according to a univoltine life cycle from 17 h to 14 h. At two photoperiods, 13 h and 16 h (corresponding to shifts between major pathways), both larval and pupal development were extremely variable with the fastest individuals developing directly and the slowest developing with a diapause. This indicates a gradual nature of diapause itself, suggesting that the two level may not he fundamentally different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号