首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46179篇
  免费   3048篇
  国内免费   5855篇
  2024年   82篇
  2023年   724篇
  2022年   894篇
  2021年   1544篇
  2020年   1431篇
  2019年   1792篇
  2018年   1460篇
  2017年   1322篇
  2016年   1375篇
  2015年   1641篇
  2014年   2254篇
  2013年   3019篇
  2012年   2047篇
  2011年   2156篇
  2010年   1776篇
  2009年   2269篇
  2008年   2389篇
  2007年   2652篇
  2006年   2596篇
  2005年   2395篇
  2004年   2187篇
  2003年   2094篇
  2002年   1871篇
  2001年   1558篇
  2000年   1332篇
  1999年   1227篇
  1998年   1119篇
  1997年   965篇
  1996年   935篇
  1995年   868篇
  1994年   830篇
  1993年   629篇
  1992年   572篇
  1991年   468篇
  1990年   420篇
  1989年   316篇
  1988年   322篇
  1987年   290篇
  1986年   240篇
  1985年   233篇
  1984年   185篇
  1983年   93篇
  1982年   131篇
  1981年   100篇
  1980年   71篇
  1979年   70篇
  1978年   42篇
  1977年   27篇
  1976年   25篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Aim  To develop a physiologically based model of the plant niche for use in species distribution modelling. Location  Europe. Methods  We link the Thornley transport resistance (TTR) model with functions which describe how the TTR’s model parameters are influenced by abiotic environmental factors. The TTR model considers how carbon and nutrient uptake, and the allocation of these assimilates, influence growth. We use indirect statistical methods to estimate the model parameters from a high resolution data set on tree distribution for 22 European tree species. Results  We infer, from distribution data and abiotic forcing data, the physiological niche dimensions of 22 European tree species. We found that the model fits were reasonable (AUC: 0.79–0.964). The projected distributions were characterized by a false positive rate of 0.19 and a false negative rate 0.12. The fitted models are used to generate projections of the environmental factors that limit the range boundaries of the study species. Main conclusions  We show that physiological models can be used to derive physiological niche dimensions from species distribution data. Future work should focus on including prior information on physiological rates into the parameter estimation process. Application of the TTR model to species distribution modelling suggests new avenues for establishing explicit links between distribution and physiology, and for generating hypotheses about how ecophysiological processes influence the distribution of plants.  相似文献   
62.
α-Glucosidases or maltases (EC 3.2.1.20) were purified to electrophoretic homogeneity from a respective strain of Sacchromyces cerevisiae which carries a single MAL gene, either MALα, MALβ or MALγ, using gluconate-Sepharose affinity chromography and isoelectrofocusing. Of these maltases, two types of maltase were obtained from the MALγ strain, the pI values of which were 5.6 and 5.9. From the MALα and MALβ strain was obtained only one type of maltase with the pI at 5.6 which was identical to one of the maltases from the MALγ strain. These four maltases possessed the same properties, except for pI. They were monomers with molecular weights of between 66 000 and 67 000. With regard to the substrate specificity, they hydrolyzed maltose and sucrose exclusively but not α-methulglucoside nor maltooligosaccharide. They did not differ in immunological properties.  相似文献   
63.
《Current biology : CB》2020,30(24):4826-4836.e7
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   
64.
《Current biology : CB》2020,30(22):4441-4453.e4
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   
65.
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium that has a significant impact on both human and animal health. It is one of the most common food-borne pathogens responsible for a self-limiting gastroenteritis in humans and a similar disease in pigs, cattle and chickens. In contrast, intravenous challenge with S. Typhimurium provides a valuable model for systemic infection, often causing a typhoid-like infection, with bacterial replication resulting in the destruction of the spleen and liver of infected animals. Resistance to systemic salmonellosis in chickens is partly genetically determined, with bacterial numbers at systemic sites in resistant lines being up to 1000-fold fewer than in susceptible lines. Identification of genes contributing to disease resistance will enable genetic selection of resistant lines that will reduce Salmonella levels in poultry flocks. We previously identified a novel resistance locus on Chromosome 5, designated SAL1 . Through the availability of high-density SNP panels in the chicken, combined with advanced back-crossing of the resistant and susceptible lines, we sought to refine the SAL1 locus and identify potential positional candidate genes. Using a 6th generation backcross mapping population, we have confirmed and refined the SAL1 locus as lying between 54.0 and 54.8 Mb on the long arm of Chromosome 5 ( F  = 8.72, P  = 0.00475). This region spans 14 genes, including two very striking functional candidates; CD27-binding protein ( Siva ) and the RAC -alpha serine/threonine protein kinase homolog , AKT1 ( protein kinase B , PKB ).  相似文献   
66.
The evolutionary response of plant populations to selection for increased defense may be constrained by costs of defense. The purpose of this study was to investigate such constraints on the evolution of defense due to a cost of defense manifested as a trade-off between defense and tolerance. Variation in the response to artificial damage (tolerance) among lines of Brassica rapa that had been artificially selected for foliar glucosinolate content (defense) was examined. Leaf area was removed from replicates of three selection lines (high glucosinolates, control, and low glucosinolates) at three damage levels (0%, 20%, and 60% damage). An external cost of defense would result in a statistically significant selection line by damage treatment interaction, with those selected for high defense expressing less tolerance than those selected for low defense. Damage treatment had a significant overall effect on estimated total fitness, with fitness declining with increasing damage level. Further, selection line also had a significant overall effect on estimated total fitness, with low-defense selection lines having higher fitness compared to both control and high-defense selection lines. More importantly, a cost of defense in terms of tolerance was demonstrated by a significant selection line-by-damage treatment interaction. This interaction was in the direction to demonstrate a genetic trade-off between defense and tolerance, with low-defense selection lines decreasing estimated total fitness in response to damage less than both control and high-defense selection lines. Variation in tolerance among selection lines was due to the greater ability of low-defense lines to maintain fruit and seed production despite the presence of damage. In terms of tolerance, this cost of glucosinolate production in B. rapa could constrain the evolution of increased defense and, in so doing, maintain individuals within the population that are poorly defended yet tolerant.  相似文献   
67.
Pancreatic cancer is a lethal disease with limited treatment options for cure. A high degree of intrinsic and acquired therapeutic resistance may result from cellular alterations in genes and proteins involved in drug transportation and metabolism, or from the influences of cancer microenvironment. Mechanistic basis for therapeutic resistance remains unclear and should profoundly impact our ability to understand pancreatic cancer pathogenesis and its effective clinical management. Recent evidences have indicated the importance of epigenetic changes in pancreatic cancer, including posttranslational modifications of proteins. We will review new knowledge on protein arginine methylation and its consequential contribution to therapeutic resistance of pancreatic cancer, underlying molecular mechanism, and clinical application of potential strategies of its reversal.  相似文献   
68.
69.
《Molecular cell》2020,77(6):1265-1278.e7
  1. Download : Download high-res image (317KB)
  2. Download : Download full-size image
  相似文献   
70.
Restriction fragment length polymorphisms (RFLPs) were described for the porcine loci for β-glucosidase (GBA) and the β-polypeptide 1 of the Na+, K+-transporting ATPase (ATP1B1). Linkage analyses using a three-generation pedigree provided evidence for the assignment of ATP1B1, GBA and two microsatellite loci (S0001 and S0067) to a previously described linkage group comprising the loci for blood group L (EAL) and an anonymous microsatellite (S0097). The linear order of the six markers was determined with confidence by multipoint analyses and the length of the linkage group was estimated at 88 CM. This linkage group was assigned to pig chromosome 4 on the basis of a previous physical localization of the ATP1B1 gene. In situ hybridization data for S0001 presented in this study were consistent with a localization on chromosome 4 and suggested a regional localization to 4pl2-pl3. The present study reveals conflicting data concerning the genetic localization of the K88 loci controlling the expression of the receptors for the E. coli pilus antigens. One group has reported data suggesting a loose linkage between K88 and EAL, now mapped to chromosome 4, whereas two other groups have found linkage between K88 and the transferrin locus (TF), mapped to chromosome 13 by in situ hybridization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号