首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   7篇
  国内免费   23篇
  2023年   5篇
  2022年   4篇
  2021年   8篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   10篇
  2013年   26篇
  2012年   8篇
  2011年   4篇
  2010年   9篇
  2009年   9篇
  2008年   15篇
  2007年   12篇
  2006年   21篇
  2005年   6篇
  2004年   13篇
  2003年   8篇
  2002年   11篇
  2001年   5篇
  2000年   4篇
  1999年   7篇
  1998年   11篇
  1997年   10篇
  1996年   6篇
  1995年   11篇
  1994年   7篇
  1993年   7篇
  1992年   10篇
  1991年   7篇
  1990年   6篇
  1989年   1篇
  1988年   4篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1972年   1篇
排序方式: 共有302条查询结果,搜索用时 31 毫秒
31.
Using DTT(red) as the reducing agent, the kinetics of the reductive unfolding of onconase, a frog ribonuclease, has been examined. An intermediate containing three disulfides, Ir, that is formed rapidly in the reductive pathway, is more resistant to further reduction than the parent molecule, indicating that the remaining disulfides in onconase are less accessible to DTT(red). Disulfide-bond mapping of Ir indicated that it is a single species lacking the (30-75) disulfide bond. The reductive unfolding pattern of onconase is consistent with an analysis of the exposed surface area of the cysteine sulfur atoms in the (30-75) disulfide bond, which reveals that these atoms are about four- and sevenfold, respectively, more exposed than those in the next two maximally exposed disulfides. By contrast, in the reductive unfolding of the homologue, RNase A, there are two intermediates, arising from the reduction of the (40-95) and (65-72) disulfide bonds, which takes place in parallel, and on a much longer time-scale, compared to the initial reduction of onconase; this behavior is consistent with the almost equally exposed surface areas of the cysteine sulfur atoms that form the (40-95) and (65-72) disulfide bonds in RNase A and the fourfold more exposed cysteine sulfur atoms of the (30-75) disulfide bond in onconase. Analysis and in silico mutation of the residues around the (40-95) disulfide bond in RNase A, which is analogous to the (30-75) disulfide bond of onconase, reveal that the side-chain of tyrosine 92 of RNase A, a highly conserved residue among mammalian pancreatic ribonucleases, lies atop the (40-95) disulfide bond, resulting in a shielding of the corresponding sulfur atoms from the solvent; such burial of the (30-75) sulfur atoms is absent from onconase, due to the replacement of Tyr92 by Arg73, which is situated away from the (30-75) disulfide bond and into the solvent, resulting in the large exposed surface-area of the cysteine sulfur atoms forming this bond. Removal of Tyr92 from RNase A resulted in the relatively rapid reduction of the mutant to form a single intermediate (des [40-95] Y92A), i.e. it resulted in an onconase-like reductive unfolding behavior. The reduction of the P93A mutant of RNase A proceeds through a single intermediate, the des [40-95] P93A species, as in onconase. Although mutation of Pro93 to Ala does not increase the exposed surface area of the (40-95) cysteine sulfur atoms, structural analysis of the mutant reveals that there is greater flexibility in the (40-95) disulfide bond compared to the (65-72) disulfide bond that may make the (40-95) disulfide bond much easier to expose, consistent with the reductive unfolding pathway and kinetics of P93A. Mutation of Tyr92 to Phe92 in RNase A has no effect on its reductive unfolding pathway, suggesting that the hydrogen bond between the hydroxyl group of Tyr92 and the carbonyl group of Lys37 has no impact on the local unfolding free energy required to expose the (40-95) disulfide bond. Thus, these data shed light on the differences between the reductive unfolding pathways of the two homologous proteins and provide a structural basis for the origin of this difference.  相似文献   
32.
Xenobiotic reductase A (XenA) from Pseudomonas putida 86 catalyzes the NADH/NADPH-dependent reduction of various substrates, including 2-cyclohexenone and 8-hydroxycoumarin. XenA is a member of the old yellow enzyme (OYE) family of flavoproteins and is structurally and functionally similar to other bacterial members of this enzyme class. A characteristic feature of XenA is the presence of a cysteine residue (Cys25) in the active site, where in most members of the OYE family a threonine residue is found that modulates the reduction potential of the FMN/FMNH- couple. We investigated the role of Cys25 by studying two variants in which the residue has been exchanged for a serine and an alanine residue. While the exchange against alanine has a remarkably small effect on the reduction potential, the reactivity and the structure of XenA, the exchange against serine increases the reduction potential by +82 mV, increases the rate constant of the reductive half-reaction and decreases the rate constant in the oxidative half-reaction. We determined six crystal structures at high to true atomic resolution (dmin 1.03-1.80 Å) of the three XenA variants with and without the substrate coumarin bound in the active site. The atomic resolution structure of XenA in complex with coumarin reveals a compressed active site geometry in which the isoalloxazine ring is sandwiched between coumarin and the protein backbone. The structures further reveal that the conformation of the active site and substrate interactions are preserved in the two variants, indicating that the observed changes are due to local effects only. We propose that Cys25 and the residues in its place determine which of the two half-reactions is rate limiting, depending on the substrate couple. This might help to explain why the genome of Pseudomonas putida encodes multiple xenobiotic reductases containing either cysteine, threonine or alanine in the active site.  相似文献   
33.
This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.  相似文献   
34.
An anaerobic microcosm set up with aquifer material from a 1,1,2,2-tetrachloroethane (TeCA) contaminated site and amended with butyrate showed a complete TeCA dechlorination to ethene. A structure analysis of the microbial community was performed by fluorescence in situ hybridization (FISH) with already available and on purpose designed probes from sequences retrieved through 16S rDNA clone library construction. FISH was chosen as identification tool to evaluate in situ whether the retrieved sequences belong to primary bacteria responsible for the biodegradative reactions. FISH probes identified up to 80% of total bacteria and revealed the absence or the marginal presence of known TeCA degraders and the abundance of two well-known H(2)-utilizing halorespiring bacteria, Sulfurospirillum (32.4 +/- 8.6% of total bacteria) and Dehalococcoides spp. (14.8 +/- 2.8), thereby providing a strong indication of their involvement in the dechlorination processes. These results were supported by the kinetic and thermodynamic analysis which provided indications that hydrogen was the actual electron donor for TeCA dechlorination. The specific probes, developed in this study, for known dechlorinators (i.e., Geobacter, Dehalobacter, and Sulfurospirillum species) represent a valuable tool for any future in situ bioremediation study as well as a quick and specific investigation tool for tracking their distribution in the field.  相似文献   
35.
采用间歇试验, 接种驯化两月的厌氧混合微生物, 考察厌氧体系中添加零价铁(Fe0)对2,4-二氯酚(2,4-DCP)生物还原脱氯效果的影响, 并对影响“Fe0+微生物”体系的一些因素进行了探索。结果显示:与零价铁或微生物的单独作用相比, “Fe0+微生物”体系能够有效促进2,4-DCP的脱氯反应, 最佳Fe0投加量和微生物接种量分别为0.5 g/L和376.2 mgVSS/L; 初始pH = 8.0对2,4-DCP的转化效果最好, 偏酸性环境不利于污染物转化; 微生物接种量与铁用量之间有一适宜比例, 一定范围内增加微生物接种量可催生出更多可降解污染物的酶或酶系, 提高2,4-DCP的降解效果。  相似文献   
36.
The actinomyceteRhodococcus chlorophenolicus PCP-1 metabolises pentachlorophenol into ultimate inorganic end products via tetrachloro-p-hydroquinone. This intermediate was further dehalogenated in the cytoplasm requiring reductant in the cell free system. Tetrafluoro-p-hydroquinone and tetrabromo-p-hydroquinone were also dehalogenated. Chlorophenol analogs, thiol blocking agents and molecular oxygen inhibited the activity. The dehalogenating reactions led to 1,2,4-trihydroxybenzene, which was further metabolized into maleic acid.Abbreviations PCP pentachlorophenol - TeCH tetrachloro-p-hydroquinone - TeFH tetrafluoro-p-hydroquinone - TeBH tetrabromo-p-hydroquinone - THB trihydroxybenzene  相似文献   
37.
Release of O‐glycans by reductive β‐elimination has become routine in many glyco‐analytical laboratories and concomitant release of N‐glycans has repeatedly been observed. Revisiting this somewhat forgotten mode of N‐glycan release revealed that all kinds of N‐glycans including oligomannosidic and complex‐type N‐glycans from plants with 3‐linked fucose and from mammals with or without 6‐linked fucose and with sialic acid could be recovered. However, the mass spectra of the obtained products revealed very surprising facts. Even after 16 h incubation in 1 M sodium borohydride, a large part of the glycans occurred in reducing form. Moreover, about one third emerged in the form of the stable amino‐functionalized 1‐amino‐1‐deoxy‐glycitol. When avoiding acidic conditions, considerable amounts of glycosylamine were observed. In addition, a compound with a reduced asparagine and de‐N‐acetylation products, in particular of sialylated glycans, was seen. The relative yields of the products reducing glycosylamine, reducing N‐glycan, 1‐amino‐1‐deoxy‐glycitol or glycitol could be controlled by the release conditions, foremost by temperature and borohydride concentration. Thus, chemical release of N‐glycans constitutes a cost‐saving alternative to enzymatic hydrolysis for the preparation of precursors for the production of reference compounds for various formats of N‐glycan analysis. Moreover, it allows to obtain a stable amino‐functionalized glycan derivative, which can be employed to construct glycan arrays or affinity matrices.  相似文献   
38.
The chloroplastic glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) of the green alga Chlamydomonas reinhardtii is reductively light activated. Homology modeling indicates that the only potential disulfide-forming cysteine residues in this enzyme are the same cysteine residues suggested to be responsible for redox-sensitivity of the higher plant enzyme (Li D, Stevens FJ, Schiffer M and Anderson LE (1994) Biophys J 67: 29–35). Apparently, the three additional cysteines in the higher plant enzyme are not necessary for light activation. The putative regulatory cysteines are juxtaposed across the domain interface and when oxidized will crosslink the domains. This would be expected to interfere with interdomain movement and catalysis. This is the first report of reductive light activation of this enzyme in a green alga.  相似文献   
39.
Models have been developed for the interaction of the pyrrolo[1,2-a]benzimidazole (PBI) antitumor agents with the two-electron activating enzyme DT-diaphorase and the DNA major groove. The DT-diaphorase model and experimental results indicate that the S-enantiomer of 3-carbamido PBI can enantioselect ovarian cancers. The reduced PBI interacts with the DNA major groove at AT base pairs by forming Hoogsteen-like hydrogen bonds. The reduced 3-amino PBI forms three hydrogen bonds in the major groove with the amino group acting as an H-bond donor to the thymine carbonyl. The DNA-binding model will permit the design of major groove recognition agents.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号