首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3037篇
  免费   401篇
  国内免费   206篇
  2024年   7篇
  2023年   125篇
  2022年   117篇
  2021年   128篇
  2020年   162篇
  2019年   201篇
  2018年   167篇
  2017年   167篇
  2016年   186篇
  2015年   202篇
  2014年   195篇
  2013年   493篇
  2012年   192篇
  2011年   225篇
  2010年   211篇
  2009年   168篇
  2008年   126篇
  2007年   111篇
  2006年   117篇
  2005年   97篇
  2004年   97篇
  2003年   63篇
  2002年   50篇
  2001年   24篇
  2000年   9篇
  1999年   3篇
  1983年   1篇
排序方式: 共有3644条查询结果,搜索用时 15 毫秒
111.
Growth decoupling can be used to optimize the production of biochemicals and proteins in cell factories. Inhibition of excess biomass formation allows for carbon to be utilized efficiently for product formation instead of growth, resulting in increased product yields and titers. Here, we used CRISPR interference to increase the production of a single-domain antibody (sdAb) by inhibiting growth during production. First, we screened 21 sgRNA targets in the purine and pyrimidine biosynthesis pathways and found that the repression of 11 pathway genes led to the increased green fluorescent protein production and decreased growth. The sgRNA targets pyrF, pyrG, and cmk were selected and further used to improve the production of two versions of an expression-optimized sdAb. Proteomics analysis of the sdAb-producing pyrF, pyrG, and cmk growth decoupling strains showed significantly decreased RpoS levels and an increase of ribosome-associated proteins, indicating that the growth decoupling strains do not enter stationary phase and maintain their capacity for protein synthesis upon growth inhibition. Finally, sdAb production was scaled up to shake-flask fermentation where the product yield was improved 2.6-fold compared to the control strain with no sgRNA target sequence. An sdAb content of 14.6% was reached in the best-performing pyrG growth decoupling strain.  相似文献   
112.
113.
114.
115.
Geobacillus thermoglucosidasius is a Gram‐positive, thermophilic bacterium capable of ethanologenic fermentation of both C5 and C6 sugars and may have possible use for commercial bioethanol production [Tang et al., 2009; Taylor et al. (2009) Trends Biotechnol 27(7): 398–405]. Little is known about the physiological changes that accompany a switch from aerobic (high redox) to microaerobic/fermentative (low redox) conditions in thermophilic organisms. The changes in the central metabolic pathways in response to a switch in redox potential were analyzed using quantitative real‐time PCR and proteomics. During low redox (fermentative) states, results indicated that glycolysis was uniformly up‐regulated, the Krebs (tricarboxylic acid or TCA) cycle non‐uniformly down‐regulated and that there was little to no change in the pentose phosphate pathway. Acetate accumulation was accounted for by strong down‐regulation of the acetate CoA ligase gene (acs) in addition to up‐regulation of the pta and ackA genes (involved in acetate production), thus conserving ATP while reducing flux through the TCA cycle. Substitution of an NADH dehydrogenase (down‐regulated) by an up‐regulated NADH:FAD oxidoreductase and up‐regulation of an ATP synthase subunit, alongside the observed shifts in the TCA cycle, suggested that an oxygen‐scavenging electron transport chain likely remained active during low redox conditions. Together with the observed up‐regulation of a glyoxalase and down‐regulation of superoxide dismutase, thought to provide protection against the accumulation of toxic phosphorylated glycolytic intermediates and reactive oxygen species, respectively, the changes observed in G. thermoglucosidasius NCIMB 11955 under conditions of aerobic‐to‐microaerobic switching were consistent with responses to low pO2 stress. Biotechnol. Bioeng. 2013; 110: 1057–1065. © 2012 Wiley Periodicals, Inc.  相似文献   
116.
The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.  相似文献   
117.
高等植物种子活力的生物学研究进展   总被引:4,自引:0,他引:4  
种子活力是种子质量的重要指标和种用价值的重要组成部分。该文从种子活力概念的演变与延伸、种子活力的遗传分析、种子活力测定方法、与种子活力相关的miRNA和蛋白质组学以及引发提高种子活力的机理等方面对高等植物种子活力的最新研究进展进行了综述,并提出了种子活力未来的研究方向。  相似文献   
118.
Abstract

Bread represents an important source of trace elements in the human diet. This study is focused on home prepared bread in the Czech Republic. The amounts of Cu, Mo, Mn, Ni and Zn (total and soluble in Tris-HCl buffer, pH 7.5), Cd, Co, Fe, Pb and Tl (total only) as well as Hg (total and soluble in mercaptoethanol-HCl mixture) in raw materials and baked bread were determined using ICP-MS. Moreover, the speciation of elements was investigated using HPLC/ICP-MS. Isolated peptide ligands of the trace elements were analysed for amino acids and characterised by MALDI-MS. The concentrations of all elements were in accordance with Czech legislation. The solubility of the Ni species was not affected by the baking process, whereas the solubilities of Mo, Mn and Zn species decreased. Soluble mercury was found only in the inorganic form. The soluble species of Cu, Mo, Mn, Ni and Zn were found in two fractions with the apparent molecular weights of 1–2 kDa and 4–5 kDa. Ligands of trace metals isolated from these fractions contained appreciable amounts of Asx, Glx, Gly, Ser and Cys. No phytochelatin-like peptides were found in the MALDI-MS spectra of isolated ligands,. Using MALDI-MS/MS, the partial amino-acids sequences of peptide ligands were obtained, and the linkages of peptides and saccharides confirmed. The MS analysis of the trypsin digest of the medium molecular weight fraction revealed several proteins rich in cysteine (e.g., barwin and amylase inhibitors).  相似文献   
119.
Zinc (Zn) is an essential trace element in all living organisms, but is toxic in excess. Several plant species are able to accumulate Zn at extraordinarily high concentrations in the leaf epidermis without showing any toxicity symptoms. However, the molecular mechanisms of this phenomenon are still poorly understood. A state‐of‐the‐art quantitative 2D liquid chromatography/tandem mass spectrometry (2D‐LC‐MS/MS) proteomics approach was used to investigate the abundance of proteins involved in Zn hyperaccumulation in leaf epidermal and mesophyll tissues of Noccaea caerulescens. Furthermore, the Zn speciation in planta was analyzed by a size‐exclusion chromatography/inductively coupled plasma mass spectrometer (SEC‐ICP‐MS) method, in order to identify the Zn‐binding ligands and mechanisms responsible for Zn hyperaccumulation. Epidermal cells have an increased capability to cope with the oxidative stress that results from excess Zn, as indicated by a higher abundance of glutathione S‐transferase proteins. A Zn importer of the ZIP family was more abundant in the epidermal tissue than in the mesophyll tissue, but the vacuolar Zn transporter MTP1 was equally distributed. Almost all of the Zn located in the mesophyll was stored as Zn–nicotianamine complexes. In contrast, a much lower proportion of the Zn was found as Zn–nicotianamine complexes in the epidermis. However, these cells have higher concentrations of malate and citrate, and these organic acids are probably responsible for complexation of most epidermal Zn. Here we provide evidence for a cell type‐specific adaptation to excess Zn conditions and an increased ability to transport Zn into the epidermal vacuoles.  相似文献   
120.
Post‐translational modifications (PTM) of proteins can control complex and dynamic cellular processes via regulating interactions between key proteins. To understand these regulatory mechanisms, it is critical that we can profile the PTM‐dependent protein–protein interactions. However, identifying these interactions can be very difficult using available approaches, as PTMs can be dynamic and often mediate relatively weak protein–protein interactions. We have recently developed CLASPI (cross‐linking‐assisted and stable isotope labeling in cell culture‐based protein identification), a chemical proteomics approach to examine protein–protein interactions mediated by methylation in human cell lysates. Here, we report three extensions of the CLASPI approach. First, we show that CLASPI can be used to analyze methylation‐dependent protein–protein interactions in lysates of fission yeast, a genetically tractable model organism. For these studies, we examined trimethylated histone H3 lysine‐9 (H3K9Me3)‐dependent protein–protein interactions. Second, we demonstrate that CLASPI can be used to examine phosphorylation‐dependent protein–protein interactions. In particular, we profile proteins recognizing phosphorylated histone H3 threonine‐3 (H3T3‐Phos), a mitotic histone “mark” appearing exclusively during cell division. Our approach identified survivin, the only known H3T3‐Phos‐binding protein, as well as other proteins, such as MCAK and KIF2A, that are likely to be involved in weak but selective interactions with this histone phosphorylation “mark”. Finally, we demonstrate that the CLASPI approach can be used to study the interplay between histone H3T3‐Phos and trimethylation on the adjacent residue lysine 4 (H3K4Me3). Together, our findings indicate the CLASPI approach can be broadly applied to profile protein–protein interactions mediated by PTMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号