首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72056篇
  免费   4876篇
  国内免费   5582篇
  2024年   80篇
  2023年   873篇
  2022年   1064篇
  2021年   1779篇
  2020年   1683篇
  2019年   2218篇
  2018年   2100篇
  2017年   1646篇
  2016年   1867篇
  2015年   2582篇
  2014年   3689篇
  2013年   4905篇
  2012年   2794篇
  2011年   3711篇
  2010年   2993篇
  2009年   3877篇
  2008年   4182篇
  2007年   4300篇
  2006年   3942篇
  2005年   3881篇
  2004年   3414篇
  2003年   3127篇
  2002年   2768篇
  2001年   1942篇
  2000年   1636篇
  1999年   1687篇
  1998年   1727篇
  1997年   1412篇
  1996年   1058篇
  1995年   1286篇
  1994年   1166篇
  1993年   994篇
  1992年   898篇
  1991年   670篇
  1990年   534篇
  1989年   469篇
  1988年   503篇
  1987年   417篇
  1986年   334篇
  1985年   379篇
  1984年   487篇
  1983年   322篇
  1982年   321篇
  1981年   196篇
  1980年   181篇
  1979年   150篇
  1978年   91篇
  1977年   48篇
  1976年   46篇
  1975年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
92.
Bovine BSP5 belongs to the Binder of SPerm (BSP) family. BSP5 plays a role in the bovine sperm capacitation by promoting cholesterol and phospholipid efflux. The variable N-terminal part in the BSP proteins is the uncharacterized region with no known function. Full-length, N-terminal part, and individual fibronectin type II domains of bovine BSP5 were cloned, expressed and purified from Escherichia coli. His-S tagged N-terminal part showed large variation in migration on SDS-PAGE in comparison to other constructs. Using mass spectrometry it was demonstrated that the His-S-N-terminal part has the expected molecular mass (13 kDa). The recombinant N-terminal part was sensitive to E. coli endogenous proteases during purification. Denaturing purification involving boiling lysis of cells was carried out, as the protein was thermostable. The His-S-N-terminal part lacked structure as determined by CD analysis. Bioinformatics analyses confirmed that the N-terminal part of bovine BSP5 is intrinsically disordered. In addition, bioinformatics analysis indicated that rabbit BSP and multiple forms of BSP proteins of bovine and equine species possess partially or completely disordered N-terminus. The conservation of disorder at the N-terminus in BSP members belonging to different species suggests a role in biological process such as sperm capacitation and/or sperm-egg interactions.  相似文献   
93.
《Current biology : CB》2020,30(5):854-864.e5
  1. Download : Download high-res image (188KB)
  2. Download : Download full-size image
  相似文献   
94.
Pancreatic cancer is a lethal disease with limited treatment options for cure. A high degree of intrinsic and acquired therapeutic resistance may result from cellular alterations in genes and proteins involved in drug transportation and metabolism, or from the influences of cancer microenvironment. Mechanistic basis for therapeutic resistance remains unclear and should profoundly impact our ability to understand pancreatic cancer pathogenesis and its effective clinical management. Recent evidences have indicated the importance of epigenetic changes in pancreatic cancer, including posttranslational modifications of proteins. We will review new knowledge on protein arginine methylation and its consequential contribution to therapeutic resistance of pancreatic cancer, underlying molecular mechanism, and clinical application of potential strategies of its reversal.  相似文献   
95.
《Molecular cell》2020,77(6):1265-1278.e7
  1. Download : Download high-res image (317KB)
  2. Download : Download full-size image
  相似文献   
96.
Typical somatic cell type histones are lost from the nucleus during late spermiogenesis in the house cricket; they are replaced by unusual basic proteins specific to the spermatid. We wish to characterize these proteins because they appear to determine the unusual chromatin structures of the spermatid. Molecular weights of the unusual basic proteins were estimated by chromatographing them on Bio-Gel A 0.5 M agarose columns eluted with 6 M guanidine hydrochloride. Two proteins named TH1 and TH2 have molecular weights in the range spanned by the somatic histones. The molecular weight of TH1 is 17 500 and that of TH2 is 15 500. Three additional spermatid proteins were also analyzed by molecular weight determination. They are called here protamines A, B and C, and they have molecular weights in the range typical of protamines. That of A is 6200, of B is 5500 and of C is 3800. They span the range from the large protamines typical of mammalian sperm to the small protamines of salmonid fish. The molecular weights of the TH proteins were also examined by electrophoresis on SDS-polyacrylamide gels. Amino acid compositions determined for TH1 and TH2 show that both are basic proteins rich in arginine relative to lysine. Their compositions are histone-like, but they appear to be distinct histone types rather than variant forms of the somatic histones.  相似文献   
97.
When expressed in Escherichia coli, a truncated form of phytochrome (oat PHYA AP3 residues 464-1129) self associates to form a series of products ranging in size from monomers to aggregates of greater than 20 subunits. When these same phytochrome sequences are coexpressed with the chaperonins GroEL and GroES, the truncated phytochrome migrates as a native-like dimer in size exclusion chromatography and no higher-order aggregates were detected. GroEL and GroES inhibition of phytochrome aggregation in E. coli presumably occurs via the suppression of folding pathways leading to incorrectly folded phytochrome.  相似文献   
98.
Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain, with propensity to adopt α-helical structure, interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.  相似文献   
99.
C3larvin toxin is a new member of the C3 class of the mono-ADP-ribosyltransferase toxin family. The C3 toxins are known to covalently modify small G-proteins, e.g. RhoA, impairing their function, and serving as virulence factors for an offending pathogen. A full-length X-ray structure of C3larvin (2.3 Å) revealed that the characteristic mixed α/β fold consists of a central β-core flanked by two helical regions. Topologically, the protein can be separated into N and C lobes, each formed by a β-sheet and an α-motif, and connected by exposed loops involved in the recognition, binding, and catalysis of the toxin/enzyme, i.e. the ADP-ribosylation turn–turn and phosphate–nicotinamide PN loops. Herein, we provide two new C3larvin X-ray structures and present a systematic study of the toxin dynamics by first analyzing the experimental variability of the X-ray data-set followed by contrasting those results with theoretical predictions based on Elastic Network Models (GNM and ANM). We identify residues that participate in the stability of the N-lobe, putative hinges at loop residues, and energy-favored deformation vectors compatible with conformational changes of the key loops and 3D-subdomains (N/C-lobes), among the X-ray structures. We analyze a larger ensemble of known C3bot1 conformations and conclude that the characteristic ‘crab-claw’ movement may be driven by the main intrinsic modes of motion. Finally, via computational simulations, we identify harmonic and anharmonic fluctuations that might define the C3larvin ‘native state.’ Implications for docking protocols are derived.  相似文献   
100.
 The role of the polypeptide matrix in electron transfer processes in proteins has been studied in two distinct systems: first in a protein where the induced ET is artificial, and second as part of the catalytic cycle of an enzyme. Azurins are structurally well-characterized blue single-copper proteins consisting of a rigid β-sheet polypeptide matrix. We have determined rate constants and activation parameters for intramolecular long-range electron transfer between the disulfide radical anions (generated by pulse radiolysis) and the copper(II) centre as a function of driving force and nature of the intervening medium in a large number of wild-type and single-site-mutated proteins. In ascorbate oxidase, for which the three-dimensional structure is equally well characterized, the internal ET from the type-I Cu(I) to the trinuclear Cu(II) centre has been studied. We find that the results correlate well with distance through well-defined pathways using a through-bond electron tunnelling mechanism. Received: 2 January 1997 / Accepted: 6 February 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号