首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55342篇
  免费   4004篇
  国内免费   3233篇
  2024年   55篇
  2023年   642篇
  2022年   946篇
  2021年   1363篇
  2020年   1247篇
  2019年   1630篇
  2018年   1640篇
  2017年   1165篇
  2016年   1342篇
  2015年   1935篇
  2014年   2828篇
  2013年   3864篇
  2012年   2075篇
  2011年   2877篇
  2010年   2310篇
  2009年   2909篇
  2008年   3123篇
  2007年   3190篇
  2006年   2894篇
  2005年   2866篇
  2004年   2510篇
  2003年   2243篇
  2002年   2076篇
  2001年   1385篇
  2000年   1171篇
  1999年   1270篇
  1998年   1266篇
  1997年   1069篇
  1996年   853篇
  1995年   950篇
  1994年   875篇
  1993年   778篇
  1992年   685篇
  1991年   492篇
  1990年   402篇
  1989年   371篇
  1988年   386篇
  1987年   351篇
  1986年   287篇
  1985年   345篇
  1984年   472篇
  1983年   311篇
  1982年   311篇
  1981年   196篇
  1980年   182篇
  1979年   153篇
  1978年   88篇
  1977年   49篇
  1976年   52篇
  1975年   31篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
921.
Raspberry bushy dwarf virus (RBDV), recently renamed to Idaeovirus rubi, is one of the most common viruses infecting Rubus species worldwide but there is still a limited number of genome sequences available in the GenBank database and the majority of the sequences include partial sequences of RNA-1 and RNA-2. The distribution and incidence of RBDV in main raspberry and blackberry growing provinces in Turkey were monitored during 2015–2019 and 537 Rubus spp. samples were tested by both DAS-ELISA and RT-PCR. Among the tested samples, 36 samples tested positive for RBDV by DAS-ELISA and 67 samples by RT-PCR. There was relatively low nucleotide diversity among the Turkish isolates. Turkish isolates shared 93%–97.7%, 84.3%–98.9%, and 85%–99.2% nucleotide sequence identities with available sequences in the GenBank, in partial RNA-1, movement protein (MP) and coat protein (CP) genes, respectively. In the phylogenetic tree constructed for RNA-1, MP, and CP sequences, all Turkish raspberry isolates were clustered in a distinct clade. However, the blackberry isolates showed considerable variation in nucleotide sequences and were placed in three distinct groups. The divergent blackberry isolates showed high variability in MP (84.5%–89.3%) and CP (85.5%–89.7%) regions and were placed in a distinct group. The rest of blackberry isolates clustered together with sweet cherry RBDV isolates adjacent to the grapevine clade or together with raspberry isolates. The comparative analysis conducted on three RNA segments of RBDV highlighted the high sequence diversity of Turkish RBDV isolates. This study also emphasizes the importance of regular monitoring of RBDV infections in Turkey, with special regard to those Rubus spp. and grapevine accessions employed in conservation and selection programmes. In particular, the presence of new RBDV genetic variants and infection of Rubus species must be taken into account to choose a correct detection protocol and management strategy.  相似文献   
922.
安影  董涛 《微生物学报》2023,63(9):3428-3440
蛋白分泌作为细胞之间传递信号的途径之一,在微生物生存竞争中也扮演着重要的角色。革兰氏阴性菌可以通过Ⅵ型分泌系统(type Ⅵ secretion system, T6SS)将效应蛋白传递至胞外或原核和真核微生物中,从而介导微生物间的竞争或宿主-细菌的相互作用,最终建立竞争优势。本文主要总结了T6SS的结构与组成,并重点对效应蛋白的装配以及其与免疫蛋白的作用机制的研究进展进行阐述,为以后靶向T6SS抗菌药物的研制提供新思路。  相似文献   
923.
【目的】多重耐药菌的出现对公共卫生安全构成严重威胁,本研究分离多重耐药大肠杆菌噬菌体,研究其生物学特性和基因组特征,为耐药菌的噬菌体疗法提供理论依据。【方法】使用双层平板法从污水样本中分离纯化大肠杆菌噬菌体;磷钨酸染色后通过透射电镜观察形态;测定其宿主范围,测定温度和pH稳定性、一步生长曲线和体外抑菌效果等生物学特性;体内抑菌试验评估噬菌体对多重耐药大肠杆菌N1203-1Af感染的大蜡螟幼虫的保护作用;基于全基因组测序对其基因组特点进行分析。【结果】本研究分离共得到5株大肠杆菌噬菌体,分别命名为pEC-S163-2.1、pEC-S163-2.2、pEC-M1167-5Ar.1、pEC-m1291-2Dr.1和pEC-N1203-2Af.1;电镜结果显示噬菌体pEC-N1203-2Af.1属于短尾噬菌体中罕见的C3形态型,头部较长,长是宽的2–3倍;pEC-N1203-2Af.1可裂解受试15株大肠杆菌中的3株;感染10 min后进入指数增长期,–20-50℃、pH值为4.0–10.0的环境下均能够保持稳定活性;大蜡螟幼虫感染大肠杆菌N1203-2Af后噬菌体pEC-N1203-2Af....  相似文献   
924.
ABSTRACT. Expression of a 21 kDa determinant (Pbs21), first detected on the surface of ookinetes, and of the circumsporozoite protein (CSP) was studied by immunofluorescence and Western blots during the developmental cycle of Plasmodium berghei in the mosquito A nopheles stephensi . The expression of Pbs21 was predominantly localised on the ookinete surface one day after the infectious blood meal, and thereafter reactivity declined to a minimum on days 2 and 3, the time of onset of oocyst development. A gradual increase in fluorescence was observed on the oocysts from day 6 that was retained until day 17 post-infection. In contrast, sporozoites released from oocysts or salivary glands showed little or no antibody labelling with anti-Pbs21. Circumsporozoite protein was not detectable in any rnidgut preparations until 5–6 days after feeding, when reactivity was observed against immature oocysts. Expression then continued and increased throughout oocyst and sporozoite development. Western blots confirmed that Pbs21 was expressed minimally during the oocyst development but was not detectable in sporozoites. Co-localisation of anti-Pbs21 and anti-CSP monoclonal antibodies to the 50 kDa and 60 kDa bands in Western blots of sporozoite suggests immunological cross-reactivity between the CSP and the anti-21 kDa antibodies.  相似文献   
925.
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.  相似文献   
926.
The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.  相似文献   
927.
Toll-Like Receptors (TLRs) play a pivotal role in immunity by recognising conserved structural features of pathogens and initiating the innate immune response. TLR signalling is subject to complex regulation that remains poorly understood. Here we show that two small type I transmembrane receptors, TMED2 and 7, that function as cargo sorting adaptors in the early secretory pathway are required for transport of TLRs from the ER to Golgi. Protein interaction studies reveal that TMED7 interacts with TLR2, TLR4 and TLR5 but not with TLR3 and TLR9. On the other hand, TMED2 interacts with TLR2, TLR4 and TLR3. Dominant negative forms of TMED7 suppress the export of cell surface TLRs from the ER to the Golgi. By contrast TMED2 is required for the ER-export of both plasma membrane and endosomal TLRs. Together, these findings suggest that association of TMED2 and TMED7 with TLRs facilitates anterograde transport from the ER to the Golgi.  相似文献   
928.
The nonstructural protein NSm of tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant of the tomato single dominant Sw-5 resistance gene. Although Sw-5 effectiveness has been shown for most TSWV isolates, the emergence of resistance-breaking (RB) isolates has been observed. It is strongly associated with two point mutations (C118Y or T120N) in the NSm viral protein. TSWV-like symptoms were observed in tomato crop cultivars (+Sw-5) in the Baja California peninsula, Mexico, and molecular methods confirmed the presence of TSWV. Sequence analysis of the NSm 118–120 motif and three-dimensional protein modelling exhibited a noncanonical C118F substitution in seven isolates, suggesting that this substitution could emulate the C118Y-related RB phenotype. Furthermore, phylogenetic and molecular analysis of the full-length genome (TSWV-MX) revealed its reassortment-related evolution and confirmed that putative RB-related features are restricted to the NSm protein. Biological and mutational NSm 118 residue assays in tomato (+Sw-5) confirmed the RB nature of TSWV-MX isolate, and the F118 residue plays a critical role in the RB phenotype. The discovery of a novel TSWV-RB Mexican isolate with the presence of C118F substitution highlights a not previously described viral adaptation in the genus Orthotospovirus, and hence, the necessity of further crop monitoring to alert the establishment of novel RB isolates in cultivated tomatoes.  相似文献   
929.
Besford  R. T. 《Plant Ecology》1993,(1):441-448
The effects of prolonged CO2 enrichment of tomato plants on photosynthetic performance and Calvin cycle enzymes, including the amount and activity of ribulose-1,5-bisphosphate carboxylase (RuBPco), were determined. Also the light-saturated rate of photosynthesis (Pmax) of the 5th leaf throughout leaf development was predicted based on the amount and kinetics of RuBPco. With short-term CO2 enrichment, i.e. only during the photosynthesis measurements, Pmax of the young leaves did not increase while the leaves reaching full expansion more than doubled their net rate of CO2 fixation. However, with longer-term CO2 enrichment, i.e. growing the crop in high CO2, the plants did not maintain this photosynthetic gain. Compared with leaves of plants grown in normal ambient CO2 the high CO2-grown leaves, when almost fully expanded, contained only about half as much RuBPco protein and Pmax in 300 and 1000 vpm CO2 was similarly reduced.The loss of RuBPco protein may be a factor associated with the accelerated fall in Pmax since Pmax was close to that predicted from the amount and kinetics of RuBPco assuming RuBP saturation. Acclimation to high CO2 is fundamentally different from acclimation to high light. In contrast to acclimation to high light, acclimation to high CO2 does not usually involve an increase in photosynthetic machinery so the synthesis and maintenance costs (as indicated by the dark respiration rate) are generally lower.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号